Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Faraday Discuss ; 213(0): 99-113, 2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30375604

RESUMO

A new type of memristor inspired by bio-membranes is presented, based on the proton movement resulting from proton-coupled electron transfer (PCET) processes in dinuclear Ru complexes, whereby a two-terminal device based on said Ru complexes and a proton-conducting polymer was constructed as a proof-of-concept. Two ITO electrodes were modified separately with dinuclear Ru complexes that bear tetraphosphonic acid linkers at both ends and a 2,6,2',6'-tetrakis(benzimidazol-2-yl)-4,4'-bipyridine (RuNH-OH) or 1,3,1',3'-tetrakis(benzimidazol-2-yl)-5,5'-biphenyl (RuCH-OH) bridging ligand, and both ITO electrodes exhibit PCET processes with different Ru(ii/iii) redox potentials and pKa values. Poly(4-vinylpyridine) (P4VP; pKa = 4-5), a proton-conducting polymer, was sandwiched between the two modified ITO electrodes to construct a two-terminal device of the type ITO|(RuNH-OH)3|P4VP|(RuCH-OH)3|ITO. Initially, the oxidation state of the metal centers in RuNH-OH and RuCH-OH is Ru(ii) and Ru(iii), respectively. Upon applying a bias voltage between the two ITO electrodes, the high and low current states switch at approximately ±1.10 V due to Ru(ii/iii) redox reactions. At the RuNH-OH|P4VP and RuCH-OH|P4VP interfaces, a proton is released from Ru(ii)NH-OH and subsequently captured by Ru(iii)CH-OH through the hydrogen-bonding interaction with the P4VP polymer, which is driven by the changes in the pKa values of the Ru complexes from 4.1-8.8 [Ru(ii)NH-OH] to <3.8 [Ru(iii)NH-OH] and from <8.4 [Ru(ii)CH-OH] to 5.2-9.8 [Ru(iii)CH-OH] under these conditions. The redox reactions on the modified Ru films create a large proton gradient between the two electrodes, enhancing the proton conductivity through the P4VP layer (pKa = 4-5). When the applied bias potential was inverted, the pKa gradient returned to the original state and the current decreased. Such a proton-conductivity enhancement is relevant to the transport of protons by proton gradients in bio-membranes. Therefore, the present protonic coordination-network films containing metal complexes that exhibit PCET should open new avenues for the design of a new type of memristor devices mimicking the function of synapses.

2.
ACS Appl Mater Interfaces ; 10(32): 26990-27000, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30020764

RESUMO

A rechargeable proton-rocking-chair-type redox capacitor was fabricated using scalable layer-by-layer-(LbL)-assembled films composed of two dinuclear Ru complexes that exhibit proton-coupled electron-transfer (PCET) reactions with different Ru(II/III) redox potentials (RuNH-OH and RuCH-OH). RuNH-OH and RuCH-OH contain different coordination environments that involve two phosphonate linker ligands at both ends and bridging 2,6,2',6'-tetrakis(benzimidazol-2-yl)-4,4'-bipyridine or 1,3,1',3'-tetrakis(benzimidazol-2-yl)-5,5'-biphenyl ligands, respectively. The molecular units were assembled onto indium tin oxide (ITO) electrodes by complexation between the phosphonate groups and zirconium(IV) ions. The LbL growing process of these multilayer films was monitored by electrochemical or UV-vis spectroscopic measurements. The thus obtained LbL films on the ITO electrodes showed PCET reactions at different potentials, depending on the bridging ligands. The introduction of cyclometalated Ru-C bonds in the bridging ligand of RuCH-OH led to the stabilization of the ruthenium(III) oxidation state, and therefore, RuCH-OH exhibited lower p Ka values for the imino N-H protons in the bridging benzimidazole groups compared to those of the corresponding RuNH-OH complex. The proton movements that accompany the redox reaction in the Ru multilayer films on the ITO electrode were confirmed using a pH indicator probe. For the performance test of a proton-rocking-chair-type redox capacitor, a two-electrode system composed of RuNH-OH and RuCH-OH multilayer films on ITO electrodes was examined in an aqueous solution of NaClO4. Under galvanostatic conditions, stable, reversible, and repeatable charging/discharging processes occurred. The capacitance increased with an increasing number of LbL layers. For comparison, a similar redox capacitor composed of two RuNMe-OH and RuCMe-OH analogues, in which all four imino N-H protons on the benzimidazole moieties are protected by N-Me groups, was constructed and examined. In these complexes, the capacitance decreased by 77% compared to the PCET-type capacitor composed of a cell containing RuNH-OH and RuCH-OH; this result strongly suggests that the proton movement plays a more important role for the charge storage than the anion movement. In such LbL films composed of Ru complexes that exhibit PCET-type redox reactions, the capacitance is drastically improved with an increasing number of layers and using protons as charge carriers.

3.
Sci Rep ; 8(1): 1461, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29362395

RESUMO

Chitin, a polymer of N-acetyl-D-glucosamine (GlcNAc), functions as a major structural component in chitin-containing organism including crustaceans, insects and fungi. Recently, we reported that acidic chitinase (Chia) is highly expressed in mouse, chicken and pig stomach tissues and that it can digest chitin in the respective gastrointestinal tracts (GIT). In this study, we focus on major livestock and domestic animals and show that the levels of Chia mRNA in their stomach tissues are governed by the feeding behavior. Chia mRNA levels were significantly lower in the bovine (herbivores) and dog (carnivores) stomach than those in mouse, pig and chicken (omnivores). Consistent with the mRNA levels, Chia protein was very low in bovine stomach. In addition, the chitinolytic activity of E. coli-expressed bovine and dog Chia enzymes were moderately but significantly lower compared with those of the omnivorous Chia enzymes. Recombinant bovine and dog Chia enzymes can degrade chitin substrates under the artificial GIT conditions. Furthermore, genomes of some herbivorous animals such as rabbit and guinea pig do not contain functional Chia genes. These results indicate that feeding behavior affects Chia expression levels as well as chitinolytic activity of the enzyme, and determines chitin digestibility in the particular animals.


Assuntos
Quitina/química , Quitinases/genética , Quitinases/metabolismo , Estômago/enzimologia , Animais , Bovinos , Galinhas , Cães , Comportamento Alimentar , Regulação da Expressão Gênica , Cobaias , RNA Mensageiro/genética , Especificidade da Espécie , Estômago/química
4.
Biochemistry ; 46(20): 6086-96, 2007 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-17469799

RESUMO

FixL is a heme-based O2 sensor protein, which responds to low O2 concentrations by activating the transcriptional activator FixJ. Signal transduction is initiated by the dissociation of O2 from the sensor domain of FixL, resulting in protein conformational changes that are transmitted to a histidine kinase domain. To gain insight into the FixL sensing mechanism, we monitored changes in the protein's structure in the picosecond to millisecond time frame, following the dissociation of the ligand using time-resolved resonance Raman spectroscopy. This study presents the time-resolved resonance Raman spectra of Sinorhizobium meliloti FixL upon O2 dissociation, as well as upon CO dissociation. The FixL spectra show that there are three steps in the dynamic structural changes that result from ligand dissociation. Ligand-dependent structural dynamics are observed in the earliest step. On the basis of comparisons of these structural changes, a scheme for the signal transduction of FixL is proposed which supports the FG loop switch mechanism. Similar spectral changes were observed both for the sensor domain and for the full-length protein, although structural changes occurred faster with the former than with the latter. This difference in rate suggests that the structural changes occurring in the heme pocket are coupled to those of the kinase domain. The implications of these results for FixL's sensing mechanism are discussed.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/fisiologia , Hemeproteínas/química , Hemeproteínas/fisiologia , Transdução de Sinais/fisiologia , Termodinâmica , Proteínas de Bactérias/metabolismo , Monóxido de Carbono/metabolismo , Heme/química , Hemeproteínas/metabolismo , Histidina Quinase , Ligantes , Oxigênio/metabolismo , Ligação Proteica , Inibidores de Proteínas Quinases/química , Proteínas Quinases/metabolismo , Estrutura Terciária de Proteína , Sinorhizobium meliloti/química , Sinorhizobium meliloti/fisiologia , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...