Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 271(19): 11076-82, 1996 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-8626650

RESUMO

While Ras proteins are activated by stimulated GDP release, which enables acquisition of the active GTP-bound state, little is known about how guanine nucleotide exchange factors (GEFs) interact with Ras to promote this exchange reaction. Here we report that mutations within the switch 2 domain of Ras (residues 62-69) inhibit activation of Ras by the mammalian GEFs, Sos1, and GRF/CDC25Mm. While mutations in the 62-69 region blocked upstream activation of Ras, they did not disrupt Ras effector functions, including transcriptional activation and transformation of NIH 3T3 cells. Biochemical analysis indicated that the loss of GEF responsiveness of a Ras(69N) mutant was due to a loss of GEF binding, with no change in intrinsic nucleotide exchange activity. Furthermore, structural analysis of Ras(69N) using NMR spectroscopy indicated that mutation of residue 69 had a very localized effect on Ras structure that was limited to alpha-helix 2 of the switch 2 domain. Together, these results suggest that the switch 2 domain of Ras forms a direct interaction with GEFs.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Estrutura Secundária de Proteína , Proteínas/metabolismo , Proteínas ras/química , Proteínas ras/metabolismo , Células 3T3 , Animais , Sítios de Ligação , Transformação Celular Neoplásica , Clonagem Molecular , Escherichia coli , Proteínas Fúngicas/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas Ativadoras de GTPase , Genes ras , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Cinética , Espectroscopia de Ressonância Magnética , Mamíferos , Camundongos , Modelos Estruturais , Mutagênese Sítio-Dirigida , Mutação Puntual , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/metabolismo , Proteína SOS1 , Ativação Transcricional , Proteínas Ativadoras de ras GTPase , ras-GRF1
2.
Mol Cell Biol ; 14(2): 1113-21, 1994 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-8289792

RESUMO

The Ras(17N) dominant negative antagonizes endogenous Ras function by forming stable, inactive complexes with Ras guanine nucleotide exchange factors (GEFs; e.g., SOS1). We have used the growth-inhibitory phenotype of Ras(17N) to characterize two aspects of Ras interaction with GEFs. First, we used a nonprenylated version of Ras(17N), designated Ras(17N/186S), which no longer associates with the plasma membrane and lacks the growth-inhibitory phenotype, to address the importance of Ras subcellular location and posttranslational modification for its interaction with GEFs. We observed that addition of an N-terminal myristylation signal to Ras(17N/186S) restored the growth-inhibitory activity of nonprenylated Ras(17N). Thus, membrane association, rather than prenylation, is critical for Ras interaction with Ras GEFs. Second, we used a biological selection approach to identify Ras residues which are critical for Ras(17N) growth inhibition and hence for interaction with Ras GEFs. We identified mutations at residues 75, 76, and 78 that abolished the growth-inhibitory activity of Ras(17N). Since GEF interaction is dispensable for oncogenic but not normal Ras function, our demonstration that single-amino-acid substitutions at these three positions impaired the transforming activity of normal but not oncogenic Ras provides further support for the role of these residues in Ras-GEF interactions. Finally, Ras(WT) proteins with mutations at these residues were no longer activated by mammalian SOS1. Altogether, these results suggest that the Ras intracellular location and Ras residues 75 to 78 are critical for Ras-GEF interaction.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Proteína Oncogênica p21(ras)/metabolismo , Células 3T3 , Sequência de Aminoácidos , Animais , Divisão Celular , Cloranfenicol O-Acetiltransferase , Cisteína , Expressão Gênica , Humanos , Camundongos , Dados de Sequência Molecular , Mutagênese , Ácido Mirístico , Ácidos Mirísticos/farmacologia , Proteína Oncogênica p21(ras)/genética , Fenótipo , Mutação Puntual , Mapeamento por Restrição , Homologia de Sequência de Aminoácidos , Serina , Transcrição Gênica , Transfecção
3.
Proc Natl Acad Sci U S A ; 90(11): 4887-91, 1993 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-8506332

RESUMO

Ras p120 GTPase activation protein (GAP), a cytosolic protein, is a negative mediator and potential downstream effector of Ras function. Since membrane association is critical for Ras function, we introduced the Ras membrane-targeting signal (a 19-residue peptide ending in CAAX, where C = cysteine, A = aliphatic amino acid, and X = any amino acid) onto the GAP N-terminal Src homology 2 and 3 and the C-terminal catalytic domains (designated nGAP/CAAX and cGAP/CAAX, respectively) to determine the role of membrane association in GAP function. cGAP/CAAX and full-length GAP/CAAX, but not GAP or nGAP/CAAX, exhibited potent growth inhibitory activity. Whereas both oncogenic and normal Ras activity were inhibited by cGAP/CAAX, nGAP/CAAX, despite lacking the Ras binding domain, inhibited the activity of oncogenic Ras without affecting the action of normal Ras. Altogether, these results demonstrate that membrane association potentiates GAP catalytic activity, support an effector function for GAP, and suggest that normal and oncogenic Ras possess different downstream interactions.


Assuntos
Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Genes ras , Genes src , Proteínas Oncogênicas/genética , Proteínas Proto-Oncogênicas/genética , Células 3T3 , Sequência de Aminoácidos , Animais , Transformação Celular Neoplásica , Cloranfenicol O-Acetiltransferase/genética , Cloranfenicol O-Acetiltransferase/metabolismo , Camundongos , Dados de Sequência Molecular , Proteínas Oncogênicas/metabolismo , Oncogenes , Reação em Cadeia da Polimerase , Proteínas Proto-Oncogênicas/metabolismo , Proto-Oncogenes , Mapeamento por Restrição , Homologia de Sequência de Aminoácidos , Transcrição Gênica , Transfecção , Proteínas rap de Ligação ao GTP
4.
Proc Natl Acad Sci U S A ; 89(14): 6403-7, 1992 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-1631135

RESUMO

We have introduced a variety of amino acid substitutions into carboxyl-terminal CA1A2X sequence (C = cysteine; A = aliphatic; X = any amino acid) of the oncogenic [Val12]Ki-Ras4B protein to identify the amino acids that permit Ras processing (isoprenylation, proteolysis, and carboxyl methylation), membrane association, and transformation in cultured mammalian cells. While all substitutions were tolerated at the A1 position, substitutions at A2 and X reduced transforming activity. The A2 residue was important for both isoprenylation and AAX proteolysis, whereas the X residue dictated the extent and specificity of isoprenoid modification only. Differences were observed between Ras processing in living cells and farnesylation efficiency in a cell-free system. Finally, one farnesylated mutant did not undergo either proteolysis or carboxyl methylation but still displayed efficient membrane association (approximately 50%) and transforming activity, indicating that farnesylation alone can support Ras transforming activity. Since both farnesylation and carboxyl methylation are critical for yeast a-factor biological activity, the three CAAX-signaled modifications may have different contributions to the function of different CAAX-containing proteins.


Assuntos
Transformação Celular Neoplásica , Farneseno Álcool/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Células 3T3 , Sequência de Aminoácidos , Animais , Compartimento Celular , Membrana Celular/metabolismo , Endopeptidases/metabolismo , Metilação , Camundongos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Processamento de Proteína Pós-Traducional
5.
Mol Cell Biol ; 12(6): 2606-15, 1992 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-1375323

RESUMO

While the Ras C-terminal CAAX sequence signals modification by a 15-carbon farnesyl isoprenoid, the majority of isoprenylated proteins in mammalian cells are modified instead by a 20-carbon geranylgeranyl moiety. To determine the structural and functional basis for modification of proteins by a specific isoprenoid group, we have generated chimeric Ras proteins containing C-terminal CAAX sequences (CVLL and CAIL) from geranylgeranyl-modified proteins and a chimeric Krev-1 protein containing the H-Ras C-terminal CAAX sequence (CVLS). Our results demonstrate that both oncogenic Ras transforming activity and Krev-1 antagonism of Ras transforming activity can be promoted by either farnesyl or geranylgeranyl modification. Similarly, geranylgeranyl-modified normal Ras [Ras(WT)CVLL], when overexpressed, exhibited the same level of transforming activity as the authentic farnesyl-modified normal Ras protein. Therefore, farnesyl and geranylgeranyl moieties are functionally interchangeable for these biological activities. In contrast, expression of moderate levels of geranylgeranyl-modified normal Ras inhibited the growth of untransformed NIH 3T3 cells. This growth inhibition was overcome by coexpression of the mutant protein with oncogenic Ras or Raf, but not with oncogenic Src or normal Ras. The similar growth-inhibiting activities of Ras(WT)CVLL and the previously described Ras(17N) dominant inhibitory mutant suggest that geranylgeranyl-modified normal Ras may exert its growth-inhibiting action by perturbing endogenous Ras function. These results suggest that normal Ras function may specifically require protein modification by a farnesyl, but not a geranylgeranyl, isoprenoid.


Assuntos
Transformação Celular Neoplásica , Cisteína/análogos & derivados , Diterpenos/metabolismo , Farneseno Álcool/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/fisiologia , Células 3T3 , Sequência de Aminoácidos , Animais , Divisão Celular , Membrana Celular/metabolismo , Cisteína/metabolismo , Proteínas de Ligação ao GTP/fisiologia , Camundongos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Relação Estrutura-Atividade , Proteínas rap de Ligação ao GTP
6.
Oncogene ; 7(2): 283-8, 1992 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-1549350

RESUMO

The mechanisms of ras activation by mutations in residue 61 and in the NKXD guanine nucleotide-binding consensus sequence (ras residues 116-119) have been evaluated. Weakly transforming mutations that either reduce intrinsic and GTPase-activating protein (GAP)-stimulated GTPase activities (61P) or enhance guanine nucleotide exchange rates (116H, 119E) were combined into the same H-ras proteins. The resulting double-mutant proteins exhibited significantly stronger transforming forming activities than are observed with each individual mutation, suggesting that the consequences of these two different mechanisms of activation favor maintenance of ras in the active form, which is GTP bound. In vivo nucleotide association analysis demonstrated a direct relationship between ras-GTP formation and transforming activity. Although both 61P and 61L mutations result in reduced intrinsic GTPase activity and loss of GAP stimulation in vitro, only H-ras(61L) exhibits strong transforming activity. While H-ras(61L) is found predominantly in the GTP-bound form, H-ras(61P) is predominantly complexed with GDP in vivo. Thus, in vitro GAP stimulation of GTPase activity does not directly correlate with transforming potential, suggesting that other ras-specific regulatory components may also be important in regulating the cycling of ras between CDP- and GTP-bound states.


Assuntos
Transformação Celular Neoplásica , GTP Fosfo-Hidrolases/metabolismo , Genes ras , Guanosina Trifosfato/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Células 3T3 , Animais , Análise Mutacional de DNA , Proteínas de Ligação ao GTP/metabolismo , Guanosina Difosfato/metabolismo , Camundongos , Mutagênese Sítio-Dirigida , Proteínas Proto-Oncogênicas p21(ras)/genética , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...