Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 19(12): e1011089, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38150455

RESUMO

Axon regeneration requires actomyosin interaction, which generates contractile force and pulls the regenerating axon forward. In Caenorhabditis elegans, TLN-1/talin promotes axon regeneration through multiple down-stream events. One is the activation of the PAT-3/integrin-RHO-1/RhoA GTPase-LET-502/ROCK (Rho-associated coiled-coil kinase)-regulatory non-muscle myosin light-chain (MLC) phosphorylation signaling pathway, which is dependent on the MLC scaffolding protein ALP-1/ALP-Enigma. The other is mediated by the F-actin-binding protein DEB-1/vinculin and is independent of the MLC phosphorylation pathway. In this study, we identified the svh-7/rtkn-1 gene, encoding a homolog of the RhoA-binding protein Rhotekin, as a regulator of axon regeneration in motor neurons. However, we found that RTKN-1 does not function in the RhoA-ROCK-MLC phosphorylation pathway in the regulation of axon regeneration. We show that RTKN-1 interacts with ALP-1 and the vinculin-binding protein SORB-1/vinexin, and that SORB-1 acts with DEB-1 to promote axon regeneration. Thus, RTKN-1 links the DEB-1-SORB-1 complex to ALP-1 and physically connects phosphorylated MLC on ALP-1 to the actin cytoskeleton. These results suggest that TLN-1 signaling pathways coordinate MLC phosphorylation and recruitment of phosphorylated MLC to the actin cytoskeleton during axon regeneration.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Talina/metabolismo , Axônios/metabolismo , Vinculina , Regeneração Nervosa/genética , Fosforilação , Quinases Associadas a rho/metabolismo , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo
2.
J Cell Sci ; 136(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36744428

RESUMO

Proper control of epidermal growth factor receptor (EGFR) signaling is important for maintaining cellular homeostasis. Given that EGFR signaling occurs at the plasma membrane and endosomes following internalization, endosomal trafficking of EGFR spatiotemporally regulates EGFR signaling. In this process, leucine-rich repeat kinase 1 (LRRK1) has multiple roles in kinase activity-dependent transport of EGFR-containing endosomes and kinase-independent sorting of EGFR into the intraluminal vesicles (ILVs) of multivesicular bodies. Active, phosphorylated EGFR inactivates the LRRK1 kinase activity by phosphorylating Y944. In this study, we demonstrate that LRRK1 facilitates EGFR dephosphorylation by PTP1B (also known as PTPN1), an endoplasmic reticulum (ER)-localized protein tyrosine phosphatase, at the ER-endosome contact site, after which EGFR is sorted into the ILVs of endosomes. LRRK1 is required for the PTP1B-EGFR interaction in response to EGF stimulation, resulting in the downregulation of EGFR signaling. Furthermore, PTP1B activates LRRK1 by dephosphorylating pY944 on the contact site, which promotes the transport of EGFR-containing endosomes to the perinuclear region. These findings provide evidence that the ER-endosome contact site functions as a hub for LRRK1-dependent signaling that regulates EGFR trafficking.


Assuntos
Endossomos , Receptores ErbB , Humanos , Células HeLa , Endossomos/metabolismo , Receptores ErbB/metabolismo , Retículo Endoplasmático/metabolismo , Corpos Multivesiculares/metabolismo , Transporte Proteico/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo
3.
J Cell Sci ; 135(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36408770

RESUMO

Mitophagy, a type of selective autophagy, specifically targets damaged mitochondria. The ULK complex regulates Parkin-mediated mitophagy, but the mechanism through which the ULK complex initiates mitophagosome formation remains unknown. The Rab7 GTPase (herein referring to Rab7a) is a key initiator of mitophagosome formation, and Ser-72 phosphorylation of Rab7 is important for this process. We have previously identified LRRK1 as a protein kinase responsible for Rab7 Ser-72 phosphorylation. In this study, we investigated the role of LRRK1 in mitophagy. We showed that LRRK1 functions downstream of ULK1 and ULK2 in Parkin-mediated mitophagy. Furthermore, we demonstrated that ectopic targeting of active LRRK1 to mitochondria is sufficient to induce the Ser-72 phosphorylation of Rab7, circumventing the requirement for ATG13, a component of the ULK complex. Thus, the ULK complex recruits LRRK1 to mitochondria by interacting with ATG13 to initiate mitophagosome formation. This study highlights the crucial role of the ULK complex-LRRK1 axis in the regulation of Parkin-mediated mitophagy.

4.
EMBO Rep ; 23(12): e55076, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36278516

RESUMO

Histidine phosphorylation is an emerging noncanonical protein phosphorylation in animals, yet its physiological role remains largely unexplored. The protein histidine phosphatase (PHPT1) was recently identified for the first time in mammals. Here, we report that PHIP-1, an ortholog of PHPT1 in Caenorhabditis elegans, promotes axon regeneration by dephosphorylating GPB-1 Gß at His-266 and inactivating GOA-1 Goα signaling, a negative regulator of axon regeneration. Overexpression of the histidine kinase NDK-1 also inhibits axon regeneration via GPB-1 His-266 phosphorylation. Thus, His-phosphorylation plays an antiregenerative role in C. elegans. Furthermore, we identify a conserved UNC-51/ULK kinase that functions in autophagy as a PHIP-1-binding protein. We demonstrate that UNC-51 phosphorylates PHIP-1 at Ser-112 and activates its catalytic activity and that this phosphorylation is required for PHIP-1-mediated axon regeneration. This study reveals a molecular link from ULK to protein histidine phosphatase, which facilitates axon regeneration by inhibiting trimeric G protein signaling.


Assuntos
Caenorhabditis elegans , Histidina , Animais , Caenorhabditis elegans/genética , Axônios , Regeneração Nervosa/genética , Monoéster Fosfórico Hidrolases , Mamíferos
5.
J Cell Sci ; 135(21)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36254578

RESUMO

Primary cilia are antenna-like organelles that regulate growth and development via extracellular signals. However, the molecular mechanisms underlying cilia dynamics, particularly those regulating their disassembly, are not well understood. Here, we show that leucine-rich repeat kinase 1 (LRRK1) plays a role in regulating cilia disassembly. The depletion of LRRK1 impairs primary cilia resorption following serum stimulation in cultured cells. Polo-like kinase 1 (PLK1) plays an important role in this process. During ciliary resorption, PLK1 phosphorylates LRRK1 at the primary cilia base, resulting in its activation. We identified nuclear distribution protein nudE-like 1 (NDEL1), which is known to positively regulate cilia disassembly, as a target of LRRK1 phosphorylation. Whereas LRRK1 phosphorylation of NDEL1 on Ser-155 promotes NDEL1 interaction with the intermediate chains of cytoplasmic dynein-2, it is also crucial for triggering ciliary resorption through dynein-2-driven retrograde intraflagellar transport. These findings provide evidence that a novel PLK1-LRRK1-NDEL1 pathway regulates cilia disassembly.


Assuntos
Cílios , Dineínas , Dineínas/metabolismo , Fosforilação , Cílios/metabolismo , Transporte Biológico/fisiologia , Organelas/metabolismo
6.
J Neurosci ; 42(5): 720-730, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-34862187

RESUMO

Chemical communication controls a wide range of behaviors via conserved signaling networks. Axon regeneration in response to injury is determined by the interaction between the extracellular environment and intrinsic growth potential. In this study, we investigated the role of chemical signaling in axon regeneration in Caenorhabditis elegans We find that the enzymes involved in ascaroside pheromone biosynthesis, ACOX-1.1, ACOX-1.2, and DAF-22, participate in axon regeneration by producing a dauer-inducing ascaroside, ascr#5. We demonstrate that the chemoreceptor genes, srg-36 and srg-37, which encode G-protein-coupled receptors for ascr#5, are required for adult-specific axon regeneration. Furthermore, the activating mutation in egl-30 encoding Gqα suppresses axon regeneration defective phenotype in acox-1.1 and srg-36 srg-37 mutants. Therefore, the ascaroside signaling system provides a unique example of a signaling molecule that regulates the regenerative pathway in the nervous system.SIGNIFICANCE STATEMENT In Caenorhabditis elegans, axon regeneration is positively regulated by the EGL-30 Gqα-JNK MAP kinase cascade. However, it remains unclear what signals activate the EGL-30 pathway in axon regeneration. Here, we show that SRG-36 and SRG-37 act as upstream G-protein-coupled receptors (GPCRs) that activate EGL-30. C. elegans secretes a family of small-molecule pheromones called ascarosides, which serve various functions in chemical signaling. SRG-36 and SRG-37 are GPCRs for the dauer-inducing ascaroside ascr#5. Consistent with this, we found that ascr#5 activates the axon regeneration pathway via SRG-36/SRG-37 and EGL-30. Thus, ascaroside signaling promotes axon regeneration by activating the GPCR-Gqα pathway.


Assuntos
Axônios/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Regeneração Nervosa/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Receptores Acoplados a Proteínas G/genética
7.
Genetics ; 219(3)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34740241

RESUMO

Neuronal regeneration after injury depends on the intrinsic growth potential of neurons. Our study shows that UNC-16, a Caenorhabditis elegans JIP3 homolog, inhibits axonal regeneration by regulating initiation and rate of regrowth. This occurs through the inhibition of the regeneration-promoting activity of the long isoform of DLK-1 and independently of the inhibitory short isoform of DLK-1. We show that UNC-16 promotes DLK-1 punctate localization in a concentration-dependent manner limiting the availability of the long isoform of DLK-1 at the cut site, minutes after injury. UNC-16 negatively regulates actin dynamics through DLK-1 and microtubule dynamics partially via DLK-1. We show that post-injury cytoskeletal dynamics in unc-16 mutants are also partially dependent on CEBP-1. The faster regeneration seen in unc-16 mutants does not lead to functional recovery. Our data suggest that the inhibitory control by UNC-16 and the short isoform of DLK-1 balances the intrinsic growth-promoting function of the long isoform of DLK-1 in vivo. We propose a model where UNC-16's inhibitory role in regeneration occurs through both a tight temporal and spatial control of DLK-1 and cytoskeletal dynamics.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , MAP Quinase Quinase Quinases/metabolismo , Regeneração Nervosa , Neurônios/fisiologia , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Animais Geneticamente Modificados , Proteínas de Caenorhabditis elegans/genética , Microtúbulos/metabolismo , Modelos Animais , Mutação , Isoformas de Proteínas/metabolismo , Análise Espaço-Temporal
8.
Sci Rep ; 11(1): 20880, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34686700

RESUMO

Cell adhesion molecule-related/downregulated by oncogenes (Cdon) is a cell-surface receptor that mediates cell-cell interactions and positively regulates myogenesis. The cytoplasmic region of Cdon interacts with other proteins to form a Cdon/JLP/Bnip-2/CDC42 complex that activates p38 mitogen-activated protein kinase (MAPK) and induces myogenesis. However, Cdon complex may include other proteins during myogenesis. In this study, we found that Cullin 2-interacting protein zinc finger SWIM type containing 8 (ZSWIM8) ubiquitin ligase is induced during C2C12 differentiation and is included in the Cdon complex. We knocked-down Zswim8 in C2C12 cells to determine the effect of ZSWIM8 on differentiation. However, we detected neither ZSWIM8-dependent ubiquitination nor the degradation of Bnip2, Cdon, or JLP. In contrast, ZSWIM8 knockdown accelerated C2C12 differentiation. These results suggest that ZSWIM8 is a Cdon complex-included myogenic protein that prevents C2C12 differentiation without affecting the stability of Bnip2, Cdon, and JLP.


Assuntos
Diferenciação Celular/fisiologia , Desenvolvimento Muscular/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Células HEK293 , Humanos , Células K562 , Sistema de Sinalização das MAP Quinases/fisiologia , Ligação Proteica/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
J Neurosci ; 41(40): 8309-8320, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34429379

RESUMO

The postinjury regenerative capacity of neurons is known to be mediated by a complex interaction of intrinsic regenerative pathways and external cues. In Caenorhabditis elegans, the initiation of axon regeneration is regulated by the nonmuscle myosin light chain-4 (MLC-4) phosphorylation signaling pathway. In this study, we have identified svh-16/cdk-14, a mammalian CDK14 homolog, as a positive regulator of axon regeneration in motor neurons. We then isolated the CDK-14-binding protein MIG-5/Disheveled (Dsh) and found that EGL-20/Wnt and the MIG-1/Frizzled receptor (Fz) are required for efficient axon regeneration. Further, we demonstrate that CDK-14 activates EPHX-1, the C. elegans homolog of the mammalian ephexin Rho-type GTPase guanine nucleotide exchange factor (GEF), in a kinase-independent manner. EPHX-1 functions as a GEF for the CDC-42 GTPase, inhibiting myosin phosphatase, which maintains MLC-4 phosphorylation. These results suggest that CDK14 activates the RhoGEF-CDC42-MLC phosphorylation axis in a noncanonical Wnt signaling pathway that promotes axon regeneration.SIGNIFICANCE STATEMENT Noncanonical Wnt signaling is mediated by Frizzled receptor (Fz), Disheveled (Dsh), Rho-type GTPase, and nonmuscle myosin light chain (MLC) phosphorylation. This study identified svh-16/cdk-14, which encodes a mammalian CDK14 homolog, as a regulator of axon regeneration in Caenorhabditis elegans motor neurons. We show that CDK-14 binds to MIG-5/Dsh, and that EGL-20/Wnt, MIG-1/Fz, and EPHX-1/RhoGEF are required for axon regeneration. The phosphorylation-mimetic MLC-4 suppressed axon regeneration defects in mig-1, cdk-14, and ephx-1 mutants. CDK-14 mediates kinase-independent activation of EPHX-1, which functions as a guanine nucleotide exchange factor for CDC-42 GTPase. Activated CDC-42 inactivates myosin phosphatase and thereby maintains MLC phosphorylation. Thus, the noncanonical Wnt signaling pathway controls axon regeneration via the CDK-14-EPHX-1-CDC-42-MLC phosphorylation axis.


Assuntos
Axônios/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Regeneração Nervosa/fisiologia , Via de Sinalização Wnt/fisiologia , Animais , Animais Geneticamente Modificados , Células COS , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Chlorocebus aethiops , Quinases Ciclina-Dependentes/genética
10.
J Neurosci ; 41(22): 4754-4767, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-33963050

RESUMO

Axon regeneration is an evolutionarily conserved process essential for restoring the function of damaged neurons. In Caenorhabditis elegans hermaphrodites, initiation of axon regeneration is regulated by the RhoA GTPase-ROCK (Rho-associated coiled-coil kinase)-regulatory nonmuscle myosin light-chain phosphorylation signaling pathway. However, the upstream mechanism that activates the RhoA pathway remains unknown. Here, we show that axon injury activates TLN-1/talin via the cAMP-Epac (exchange protein directly activated by cAMP)-Rap GTPase cascade and that TLN-1 induces multiple downstream events, one of which is integrin inside-out activation, leading to the activation of the RhoA-ROCK signaling pathway. We found that the nonreceptor tyrosine kinase Src, a key mediator of integrin signaling, activates the Rho guanine nucleotide exchange factor EPHX-1/ephexin by phosphorylating the Tyr-568 residue in the autoinhibitory domain. Our results suggest that the C. elegans integrin signaling network regulates axon regeneration via the Src-RhoGEF-RhoA axis.SIGNIFICANCE STATEMENT The ability of axons to regenerate after injury is governed by cell-intrinsic regeneration pathways. We have previously demonstrated that the Caenorhabditis elegans RhoA GTPase-ROCK (Rho-associated coiled-coil kinase) pathway promotes axon regeneration by inducing MLC-4 phosphorylation. In this study, we found that axon injury activates TLN-1/talin through the cAMP-Epac (exchange protein directly activated by cAMP)-Rap GTPase cascade, leading to integrin inside-out activation, which promotes axonal regeneration by activating the RhoA signaling pathway. In this pathway, SRC-1/Src acts downstream of integrin activation and subsequently activates EPHX-1/ephexin RhoGEF by phosphorylating the Tyr-568 residue in the autoinhibitory domain. Our results suggest that the C. elegans integrin signaling network regulates axon regeneration via the Src-RhoGEF-RhoA axis.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Integrinas/metabolismo , Regeneração Nervosa/fisiologia , Proteína rhoA de Ligação ao GTP/metabolismo , Quinases da Família src/metabolismo , Animais , Axônios/metabolismo , Caenorhabditis elegans , Transdução de Sinais/fisiologia
11.
J Neurosci ; 41(13): 2842-2853, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33593852

RESUMO

The breast cancer susceptibility protein BRCA1 and its partner BRCA1-associated RING domain protein 1 (BARD1) form an E3-ubiquitin (Ub) ligase complex that acts as a tumor suppressor in mitotic cells. However, the roles of BRCA1-BARD1 in postmitotic cells, such as neurons, remain poorly defined. Here, we report that BRC-1 and BRD-1, the Caenorhabditis elegans orthologs of BRCA1 and BARD1, are required for adult-specific axon regeneration, which is positively regulated by the EGL-30 Gqα-diacylglycerol (DAG) signaling pathway. This pathway is downregulated by DAG kinase (DGK), which converts DAG to phosphatidic acid (PA). We demonstrate that inactivation of DGK-3 suppresses the brc-1 brd-1 defect in axon regeneration, suggesting that BRC-1-BRD-1 inhibits DGK-3 function. Indeed, we show that BRC-1-BRD-1 poly-ubiquitylates DGK-3 in a manner dependent on its E3 ligase activity, causing DGK-3 degradation. Furthermore, we find that axon injury causes the translocation of BRC-1 from the nucleus to the cytoplasm, where DGK-3 is localized. These results suggest that the BRC-1-BRD-1 complex regulates axon regeneration in concert with the Gqα-DAG signaling network. Thus, this study describes a new role for breast cancer proteins in fully differentiated neurons and the molecular mechanism underlying the regulation of axon regeneration in response to nerve injury.SIGNIFICANCE STATEMENT BRCA1-BRCA1-associated RING domain protein 1 (BARD1) is an E3-ubiquitin (Ub) ligase complex acting as a tumor suppressor in mitotic cells. The roles of BRCA1-BARD1 in postmitotic cells, such as neurons, remain poorly defined. We show here that Caenorhabditis elegans BRC-1/BRCA1 and BRD-1/BARD1 are required for adult-specific axon regeneration, a process that requires high diacylglycerol (DAG) levels in injured neurons. The DAG kinase (DGK)-3 inhibits axon regeneration by reducing DAG levels. We find that BRC-1-BRD-1 poly-ubiquitylates and degrades DGK-3, thereby keeping DAG levels elevated and promoting axon regeneration. Furthermore, we demonstrate that axon injury causes the translocation of BRC-1 from the nucleus to the cytoplasm, where DGK-3 is localized. Thus, this study describes a new role for BRCA1-BARD1 in fully-differentiated neurons.


Assuntos
Axônios/metabolismo , Diacilglicerol Quinase/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Regeneração Nervosa/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Células COS , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Chlorocebus aethiops , Diacilglicerol Quinase/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Transdução de Sinais/fisiologia , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética
12.
J Neurosci ; 41(11): 2373-2381, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33514673

RESUMO

In Caenorhabditis elegans, axon regeneration is activated by a signaling cascade through the receptor tyrosine kinase (RTK) SVH-2. Axonal injury induces svh-2 gene expression by degradation of the Mad-like transcription factor MDL-1. In this study, we identify the svh-24/sdz-33 gene encoding a protein containing F-box and F-box-associated domains as a regulator of axon regeneration in motor neurons. We find that sdz-33 is required for axon injury-induced svh-2 expression. SDZ-33 targets MDL-1 for poly-ubiquitylation and degradation. Furthermore, we demonstrate that SDZ-33 promotes axotomy-induced nuclear degradation of MDL-1, resulting in the activation of svh-2 expression in animals. These results suggest that the F-box protein is required for RTK signaling in the control of axon regeneration.SIGNIFICANCE STATEMENT In Caenorhabditis elegans, axon regeneration is positively regulated by the growth factor SVH-1 and its receptor tyrosine kinase SVH-2. Expression of the svh-2 gene is induced by axonal injury via the Ets-like transcription factor ETS-4, whose transcriptional activity is inhibited by the Mad-like transcription factor MDL-1. Axon injury leads to the degradation of MDL-1, and this is linked to the activation of ETS-4 transcriptional activity. In this study, we identify the sdz-33 gene encoding a protein containing an F-box domain as a regulator of axon regeneration. We demonstrate that MDL-1 is poly-ubiquitylated and degraded through the SDZ-33-mediated 26S proteasome pathway. These results reveal that an F-box protein promotes axon regeneration by degrading the Mad transcription factor.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Proteínas de Ligação a DNA/fisiologia , Proteínas F-Box/fisiologia , Regeneração Nervosa/fisiologia , Aminoácidos/metabolismo , Animais , Animais Geneticamente Modificados , Axônios/fisiologia , Axotomia , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/genética , Proteínas F-Box/genética , Neurônios Motores/fisiologia , Regeneração Nervosa/genética , Plasmídeos , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/fisiologia , Ubiquitina
13.
Bioessays ; 42(8): e1900185, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32529675

RESUMO

Axon regeneration is a conserved process across the animal kingdom. Recent studies using the soil worm Caenorhabditis elegans as a model system revealed that machineries regulating engulfment of dying cells also control axon regeneration and axon debris removal. In this review, the relationships between the engulfment machinery and the biological processes triggered by axon injury and subsequent axon regeneration drawn from divergent views are examined. In one study, it is found that engulfing cells directly promote axon regeneration. In this context, CED-1 (Drosophila Draper/mouse MEGF10), an engulfment protein expressed on the surface of engulfing cells, functions as a receptor for axon debris removal and as an adhesion molecule for axon regeneration. In other studies, it is shown that those engulfment genes, previously known to function within the engulfing cells for cell corpse removal, can have a cell-autonomous "non-engulfing cell" role in axon regeneration. Together, these findings suggest that engulfment genes are repurposed for neuronal regeneration by acting in both engulfing cells and regenerating neurons.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Apoptose , Axônios , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Membrana , Camundongos , Regeneração Nervosa , Neurônios
14.
J Biochem ; 167(5): 433-439, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32091576

RESUMO

Axon regeneration following nerve injury is a highly conserved process in animals. The nematode Caenorhabditis elegans is an excellent model for investigating the molecular mechanisms of axon regeneration. Recent studies using C. elegans have shown that the c-Jun N-terminal kinase (JNK) plays the important role in axon regeneration. Furthermore, many factors have been identified that act upstream of the JNK cascade after axotomy. This review introduces these factors and describes their roles during the regulation of axon regeneration.


Assuntos
Axônios/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Regeneração Nervosa , Fatores de Transcrição/metabolismo , Animais , Transdução de Sinais
15.
EMBO Rep ; 20(10): e47517, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31393064

RESUMO

In Caenorhabditis elegans, the JNK MAP kinase (MAPK) pathway is important for axon regeneration. The JNK pathway is activated by a signaling cascade consisting of the growth factor SVH-1 and its receptor tyrosine kinase SVH-2. Expression of the svh-2 gene is induced by axonal injury in a process involving the transcription factors ETS-4 and CEBP-1. Here, we find that svh-14/mxl-1, a gene encoding a Max-like transcription factor, is required for activation of svh-2 expression in response to axonal injury. We show that MXL-1 binds to and inhibits the function of TDPT-1, a C. elegans homolog of mammalian tyrosyl-DNA phosphodiesterase 2 [TDP2; also called Ets1-associated protein II (EAPII)]. Deletion of tdpt-1 suppresses the mxl-1 defect, but not the ets-4 defect, in axon regeneration. TDPT-1 induces SUMOylation of ETS-4, which inhibits ETS-4 transcriptional activity, and MXL-1 counteracts this effect. Thus, TDPT-1 interacts with two different transcription factors in axon regeneration.


Assuntos
Axônios/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Regeneração Nervosa , Diester Fosfórico Hidrolases/metabolismo , Proteínas Proto-Oncogênicas c-ets/metabolismo , Sumoilação , Fatores de Transcrição/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Modelos Biológicos , Neurônios Motores/metabolismo , Fosforilação , Ligação Proteica , Transcrição Gênica
16.
Genetics ; 213(2): 491-500, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31371405

RESUMO

Axon regeneration following neuronal injury is an important repair mechanism that is not well understood at present. In Caenorhabditis elegans, axon regeneration is regulated by DDR-2, a receptor tyrosine kinase (RTK) that contains a discoidin domain and modulates the Met-like SVH-2 RTK-JNK MAP kinase signaling pathway. Here, we describe the svh-10/sqv-3 and svh-11 genes, which encode components of a conserved glycosylation pathway, and show that they modulate axon regeneration in C. elegans Overexpression of svh-2, but not of ddr-2, can suppress the axon regeneration defect observed in svh-11 mutants, suggesting that SVH-11 functions between DDR-2 and SVH-2 in this glycosylation pathway. Furthermore, we found that DDR-2 is N-glycosylated at the Asn-141 residue located in its discoidin domain, and mutation of this residue caused an axon regeneration defect. These findings indicate that N-linked glycosylation plays an important role in axon regeneration in C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Receptor com Domínio Discoidina 2/genética , Fucosiltransferases/genética , Regeneração Nervosa/genética , Receptores Proteína Tirosina Quinases/genética , Animais , Axônios/metabolismo , Axônios/fisiologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Receptores com Domínio Discoidina/genética , Glicosilação , Sistema de Sinalização das MAP Quinases/genética , Mutação , Neurônios/metabolismo
17.
J Cell Sci ; 132(11)2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31085713

RESUMO

Ligand-induced activation of epidermal growth factor receptor (EGFR) initiates trafficking events that re-localize the receptor from the cell surface to intracellular endocytic compartments. EGFR-containing endosomes are transported to lysosomes for degradation by the dynein-dynactin motor protein complex. However, this cargo-dependent endosomal trafficking mechanism remains largely uncharacterized. Here, we show that GTP-bound Rab7 is phosphorylated on S72 by leucine-rich repeat kinase 1 (LRRK1) at the endosomal membrane. This phosphorylation promotes the interaction of Rab7 (herein referring to Rab7a) with its effector RILP, resulting in recruitment of the dynein-dynactin complex to Rab7-positive vesicles. This, in turn, facilitates the dynein-driven transport of EGFR-containing endosomes toward the perinuclear region. These findings reveal a mechanism regulating the cargo-specific trafficking of endosomes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Endossomos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Complexo Dinactina/metabolismo , Dineínas/metabolismo , Receptores ErbB/metabolismo , Células HEK293 , Células HeLa , Humanos , Fosforilação , Transporte Proteico/fisiologia , proteínas de unión al GTP Rab7
18.
J Neurosci ; 39(29): 5662-5672, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31109965

RESUMO

Axon regeneration is a conserved mechanism induced by axon injury that initiates a neuronal response leading to regrowth of the axon. In Caenorhabditis elegans, the initiation of axon regeneration is regulated by the JNK MAP kinase (MAPK) pathway. We have previously identified a number of genes affecting the JNK pathway using an RNAi-based screen. Analysis of these genes, called the svh genes, has shed new light on the regulation of axon regeneration, revealing the involvement of a signaling cascade consisting of a growth factor SVH-1 and its receptor, the tyrosine kinase SVH-2. Here, we characterize the svh-6/tns-1 gene, which is a homolog of mammalian tensin, and show that it is a positive regulator of axon regeneration in motor neurons. We demonstrate that TNS-1 interacts with tyrosine-autophosphorylated SVH-2 and the integrin ß subunit PAT-3 via its SH2 and PTB domains, respectively, to promote axon regeneration. These results suggest that TNS-1 acts as an adaptor to link the SVH-2 and integrin signaling pathways.SIGNIFICANCE STATEMENT The Caenorhabditis elegans JNK MAPK pathway regulates the initiation of axon regeneration. Previously, we showed that a signaling cascade consisting of the HGF-like growth factor SVH-1 and its Met-like receptor tyrosine kinase SVH-2 promotes axon regeneration through activation of the JNK pathway. In this study, we show that the C. elegans tensin, TNS-1, is required for efficient regeneration after axon injury. Phosphorylation of SVH-2 on tyrosine mediates its interaction with the SH2 domain of TNS-1 to positively regulate axon regeneration. Furthermore, TNS-1 interacts via its PTB domain with the integrin ß subunit PAT-3. These results suggest that TNS-1 plays a critical role in the regulation of axon regeneration by linking the SVH-2 and integrin signaling pathways.


Assuntos
Axônios/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Regeneração Nervosa/fisiologia , Receptores Proteína Tirosina Quinases/metabolismo , Tensinas/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Células COS , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Chlorocebus aethiops , Metionina/genética , Metionina/metabolismo , Receptores Proteína Tirosina Quinases/genética , Transdução de Sinais/fisiologia , Tensinas/genética
19.
Cell Rep ; 24(7): 1880-1889, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30110643

RESUMO

The ability of specific neurons to regenerate their axons after injury is governed by cell-intrinsic regeneration pathways. However, the mechanisms regulating axon regeneration are not well understood. Here, we identify the brc-2 gene encoding a homolog of the mammalian BRCA2 tumor suppressor as a regulator of axon regeneration in Caenorhabditis elegans motor neurons. We show that the RHO-1/Rho GTPase-LET-502/ROCK (Rho-associated coiled-coil kinase)-regulatory non-muscle myosin light-chain (MLC-4/MLC) phosphorylation signaling pathway regulates axon regeneration. BRC-2 functions between RHO-1 and LET-502, suggesting that BRC-2 is required for the activation of LET-502 by RHO-1-GTP. We also find that one component that interacts with BRC-2, the ALP (α-actinin-associated LIM protein)/Enigma protein ALP-1, is required for regeneration and acts between LET-502 and MLC-4 phosphorylation. Furthermore, we demonstrate that ALP-1 associates with LET-502 and MLC-4. Thus, ALP-1 serves as a platform to activate MLC-4 phosphorylation mediated by the RHO-1-LET-502 signaling pathway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/genética , Proteínas com Domínio LIM/genética , Cadeias Leves de Miosina/genética , Regeneração Nervosa/genética , Proteínas rho de Ligação ao GTP/genética , Quinases Associadas a rho/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Axotomia/métodos , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Proteínas com Domínio LIM/metabolismo , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Cadeias Leves de Miosina/metabolismo , Crescimento Neuronal/genética , Plasticidade Neuronal/genética , Fosforilação , Ligação Proteica , Transdução de Sinais , Proteínas rho de Ligação ao GTP/metabolismo , Quinases Associadas a rho/metabolismo
20.
Nat Commun ; 9(1): 3099, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30082731

RESUMO

Following axon injury, a cascade of signaling events is triggered to initiate axon regeneration. However, the mechanisms regulating axon regeneration are not well understood at present. In Caenorhabditis elegans, axon regeneration utilizes many of the components involved in phagocytosis, including integrin and Rac GTPase. Here, we identify the transthyretin (TTR)-like protein TTR-11 as a component functioning in axon regeneration upstream of integrin. We show that TTR-11 binds to both the extracellular domain of integrin-α and phosphatidylserine (PS). Axon injury induces the accumulation of PS around the injured axons in a manner dependent on TTR-11, the ABC transporter CED-7, and the caspase CED-3. Furthermore, we demonstrate that CED-3 activates CED-7 during axon regeneration. Thus, TTR-11 functions to link the PS injury signal to activation of the integrin pathway, which then initiates axon regeneration.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Fosfatidilserinas/metabolismo , Transdução de Sinais , Animais , Animais Geneticamente Modificados , Apoptose , Axônios/metabolismo , Caspases/metabolismo , Proteínas do Citoesqueleto/metabolismo , Integrinas/metabolismo , Lipídeos/química , Mutação , Regeneração Nervosa , Fagocitose , Plasmídeos/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...