Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes Cells ; 6(8): 707-19, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11532030

RESUMO

BACKGROUND: TFIIH is one of the general transcription factors required for accurate transcription of protein-coding genes by RNA polymerase II. TFIIH has helicase and kinase activities, plays a role in promoter opening and promoter escape, and is also implicated in efficient activator-dependent transcription. RESULTS: We have established a reconstitution system of recombinant TFIIH using a three-virus baculovirus expression system. The recombinant TFIIH was active in CTD kinase and DNA helicase assays, and showed both basal and activator-dependent transcriptional activities that were indistinguishable from those of HeLa cell-derived TFIIH. Further analyses using recombinant TFIIH confirmed a critical role of TFIIH in activator-dependent transcription. The dose response of TFIIH in activator-dependent transcription suggested that mere recruitment of TFIIH is not sufficient for transcriptional activation. The sensitivity of activator-dependent transcription to nonhydrolysable ATP analogues indicated the importance of the enzymatic activities of TFIIH in transcriptional activation. CONCLUSIONS: Our results raise a possibility that transcriptional activation by GAL4-VP16 requires enzymatic activities. Recombinant TFIIH reconstituted from this baculovirus system should be useful for analysis of the mechanisms of activation by GAL4-VP16.


Assuntos
DNA Helicases/metabolismo , Fatores de Transcrição TFII , Fatores de Transcrição/metabolismo , Transcrição Gênica , Trifosfato de Adenosina/metabolismo , Baculoviridae , Clonagem Molecular/métodos , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Hidrólise , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Polimerase II/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Transativadores/metabolismo , Fator de Transcrição TFIIH , Fatores de Transcrição/genética , Fatores de Transcrição/isolamento & purificação , Transfecção , Células Tumorais Cultivadas
2.
J Biol Chem ; 276(35): 33086-92, 2001 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-11425859

RESUMO

The receptor activator of NF-kappaB ligand induces the expression of tartrate-resistant acid phosphatase (TRAP) and transcription factor, PU.1-interacting protein (Pip), during osteoclastogenesis. In this paper, we have examined the role of transcription factors in the regulation of TRAP gene expression employing reporter constructs containing the promoter region of TRAP gene. Transient transfection of RAW264 cells with sequential 5'-deletions of mouse TRAP gene promoter-luciferase fusion constructs indicated that at least two sites are required for the full promoter activity. Deletion and site-directed mutation studies revealed that M-box and interferon regulatory factor element sites are critical for TPAP gene expression in the cell, suggesting that microphthalmia transcription factor (MITF) and Pip could induce the gene expression independently. Moreover, the overexpression of MITF and Pip functionally stimulated TRAP promoter activity in a synergistic manner. Analysis of the deletion mutants of Pip protein indicated that both N-terminal DNA-binding and C-terminal regulatory domains are indispensable to the promoter-enhancing activity. Subcellular localization of green fluorescence protein-fused Pip and its mutant proteins indicated that the C-terminal domain is required for the translocation of Pip into the nucleus. These results suggest that Pip regulates and acts synergistically with MITF to induce the promoter activity of TRAP gene.


Assuntos
Fosfatase Ácida/genética , Proteínas de Transporte , Proteínas de Ligação a DNA/metabolismo , Regulação Enzimológica da Expressão Gênica , Isoenzimas/genética , Glicoproteínas de Membrana , NF-kappa B/metabolismo , Regiões Promotoras Genéticas , Receptores do Fator de Necrose Tumoral/metabolismo , Transativadores/metabolismo , Fatores de Transcrição , Fosfatase Ácida/metabolismo , Animais , Sítios de Ligação , Células da Medula Óssea/fisiologia , Linhagem Celular , Genes Reporter , Humanos , Fatores Reguladores de Interferon , Isoenzimas/metabolismo , Zíper de Leucina , Macrófagos/fisiologia , Camundongos , Fator de Transcrição Associado à Microftalmia , Mutagênese Sítio-Dirigida , Ligante RANK , Receptor Ativador de Fator Nuclear kappa-B , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Fosfatase Ácida Resistente a Tartarato , Transfecção
3.
Mol Gen Genet ; 264(6): 852-9, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11254133

RESUMO

RNA polymerase I of Saccharomyces cerevisiae contains a small subunit, A12.2, encoded by RPA12, that was previously shown to be involved in the assembly and/or stabilization of the largest subunit, A190, of RNA polymerase I. To examine whether an equivalent subunit is present in another eukaryotic RNA polymerase I, we have cloned a Schizosaccahromyces pombe cDNA that is able to complement the rpa12 mutation in S. cerevisiae. The gene, named Sprpa12+, encodes a polypeptide of 119 amino acids that shows 55% identity to S. cerevisiae A12. 2 over its entire length, including two zinc-finger motifs. Disruption of the chromosomal Sprpa12+ gene shows that it is required for growth at higher temperatures but not at lower temperatures. Expression of Sprpa190+/nuc1+, which encodes the largest subunit of the S. pombe RNA polymerase I, from a multicopy plasmid can partially suppress the growth defect of the Sprpa12 disruptant at higher temperatures. These findings suggest that A12.2 subunit is functionally and structurally conserved between S. cerevisiae and S. pombe. Finally, the analysis of mutants suggests that SpRPA12 requires the zinc-finger domain in the N-terminal region but not the one in the C-terminal region for its function.


Assuntos
RNA Polimerase I/genética , RNA Polimerase I/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Cromossomos Fúngicos , Sequência Conservada , Teste de Complementação Genética , Genótipo , Dados de Sequência Molecular , Plasmídeos , Subunidades Proteicas , RNA Polimerase I/química , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Alinhamento de Sequência , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Dedos de Zinco
5.
Mol Cell ; 5(6): 1067-72, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10912001

RESUMO

We report that the chromatin-specific transcription elongation factor FACT functions in conjunction with the RNA polymerase II CTD kinase P-TEFb to alleviate transcription inhibition by DSIF (DRB sensitivity-inducing factor) and NELF (negative elongation factor). We find that the kinase activity of TFIIH is dispensable for this activity, demonstrating that TFIIH-mediated CTD phosphorylation is not involved in the regulation of FACT and DSIF/NELF activities. Thus, we propose a novel transcriptional regulatory network in which DSIF/NELF inhibition of transcription is prevented by P-TEFb in cooperation with FACT. This study uncovers a novel role for FACT in the regulation of transcription on naked DNA that is independent of its activities on chromatin templates. In addition, this study reveals functional differences between P-TEFb and TFIIH in the regulation of transcription.


Assuntos
Proteínas de Ligação a DNA , Proteínas de Drosophila , Proteínas de Grupo de Alta Mobilidade , Proteínas Nucleares/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras , Fatores de Transcrição TFII , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Transcrição Gênica , Fatores de Elongação da Transcrição , Regulação da Expressão Gênica , Humanos , Mutação , Proteínas Nucleares/metabolismo , Fosforilação , Fator B de Elongação Transcricional Positiva , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Fator de Transcrição TFIIH , Fatores de Transcrição/genética
6.
Mol Cell Biol ; 20(4): 1263-70, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10648612

RESUMO

The Rpb6 subunit of RNA polymerase II is one of the five subunits common to three forms of eukaryotic RNA polymerase. Deletion and truncation analyses of the rpb6 gene in the fission yeast Schizosaccharomyces pombe indicated that Rpb6, consisting of 142 amino acid residues, is an essential protein for cell viability, and the essential region is located in the C-terminal half between residues 61 and 139. After random mutagenesis, a total of 14 temperature-sensitive mutants were isolated, each carrying a single (or double in three cases and triple in one) mutation. Four mutants each carrying a single mutation in the essential region were sensitive to 6-azauracil (6AU), which inhibits transcription elongation by depleting the intracellular pool of GTP and UTP. Both 6AU sensitivity and temperature-sensitive phenotypes of these rpb6 mutants were suppressed by overexpression of TFIIS, a transcription elongation factor. In agreement with the genetic studies, the mutant RNA polymerases containing the mutant Rpb6 subunits showed reduced affinity for TFIIS, as measured by a pull-down assay of TFIIS-RNA polymerase II complexes using a fusion form of TFIIS with glutathione S-transferase. Moreover, the direct interaction between TFIIS and RNA polymerase II was competed by the addition of Rpb6. Taken together, the results lead us to propose that Rpb6 plays a role in the interaction between RNA polymerase II and the transcription elongation factor TFIIS.


Assuntos
RNA Polimerase II/química , RNA Polimerase II/metabolismo , Schizosaccharomyces/metabolismo , Fatores Genéricos de Transcrição , Fatores de Transcrição/metabolismo , Fatores de Elongação da Transcrição , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação/genética , Primers do DNA/genética , Deleção de Genes , Genes Fúngicos , Dados de Sequência Molecular , Mutação , Estrutura Quaternária de Proteína , RNA Polimerase II/genética , Schizosaccharomyces/genética , Schizosaccharomyces/crescimento & desenvolvimento , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Temperatura
7.
Mol Gen Genet ; 261(2): 364-73, 1999 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10102372

RESUMO

Eukaryotic RNA polymerases I and III consist of multiple subunits. Each of these enzymes includes two distinct and evolutionarily conserved subunits called alpha-related subunits which are shared only by polymerases I and III. The alpha-related subunits show limited homology with the alpha-subunit of prokaryotic RNA polymerase. To gain further insight into the structure and function of alpha-related subunits, we cloned and characterized a gene from Schizosaccharomyces pombe that encodes a protein of 17 kDa which can functionally replace AC19 - an alpha-related subunit of RNA polymerases I and III of Saccharomyces cerevisiae - and was thus named rpa17+. RPA17 has 125 amino acids and shows 63% identity to AC19 over a 108-residue stretch, whereas the N-terminal regions of the two proteins are highly divergent. Disruption of rpa17+ shows that the gene is essential for cell growth. Sequence comparison with other alpha-related subunits from different species showed that RPA17 contains an 81-amino acid block that is evolutionarily conserved. Deletion analysis of the N- and C-terminal regions of RPA17 and AC19 confirms that the 81-amino acid block is important for the function of the alpha-related subunits.


Assuntos
RNA Polimerases Dirigidas por DNA , Genes Fúngicos , Proteínas/genética , RNA Polimerase III/genética , RNA Polimerase I/genética , Saccharomyces cerevisiae/enzimologia , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces/enzimologia , Schizosaccharomyces/genética , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , DNA Fúngico , Células Eucarióticas , Teste de Complementação Genética , Dados de Sequência Molecular , Mutagênese , Saccharomyces cerevisiae/genética
8.
Mol Gen Genet ; 262(4-5): 749-57, 1999 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-10628857

RESUMO

Eukaryotic RNA polymerases I and III share two distinct alpha-related subunits that show limited homology to the alpha subunit of Escherichia coli RNA polymerase, which forms a homodimer to nucleate the assembly of prokaryotic RNA polymerase. To gain insight into the functions of alpha-related subunits in eukaryotes, we have previously identified the alpha-related small subunit RPA17 of RNA polymerase I (and III) in Schizosaccharomyces pombe, and have shown that it is a functional homolog of Saccharomyces cerevisiae AC19. In an extension of that study, we have now isolated and characterized rpa42+, which encodes the alpha-related large subunit RPA42 of S. pombe RNA polymerase I, by virtue of the fact that its product interacts with RPA17 in the yeast two-hybrid system. We have found that rpa42+ encodes a polypeptide with an apparent molecular mass of 42 kDa, which shows 58% identity to the AC40 subunit shared by RNA polymerases I and III in S. cerevisiae. Furthermore, we have shown that rpa42+ complements a temperature-sensitive mutation in RPC40 the gene that encodes AC40 in S. cerevisiae and which is essential for cell growth. Finally, we have shown that neither RPA42 nor RPA17 can self-associate. These results provide evidence that the two distinct alpha-related subunits, RPA42 and RPA17, of RNA polymerases I and III are functionally conserved between S. pombe and S. cerevisiae, and suggest that heterodimer formation between them is essential for the assembly of RNA polymerases I and III in eukaryotes.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces/genética , Sequência de Aminoácidos , Clonagem Molecular , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Dados de Sequência Molecular , Ligação Proteica , RNA Polimerase I/genética , RNA Polimerase I/metabolismo , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Técnicas do Sistema de Duplo-Híbrido
10.
Mol Cell Biol ; 16(1): 281-7, 1996 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-8524305

RESUMO

Unliganded human thyroid hormone receptor alpha (hTR alpha) can repress transcription by inhibiting the formation of a functional preinitiation complex (PIC) on promoters bearing thyroid hormone receptor (TR)-binding elements. Here we demonstrate that hTR alpha directly contacts the TATA-binding protein (TBP) and that preincubation of hTR alpha with TBP completely alleviates TR-mediated repression in vitro. Using stepwise preassembled PICs, we show that hTR alpha targets either the TBP/TFIIA or the TBP/TFIIA/TFIIB steps of PIC assembly for repression. We also show that the repression domain of hTR alpha maps to the C-terminal ligand-binding region and that direct TR-TBP interactions can be inhibited by thyroid hormone. Together, these results suggest a model in which unliganded hTR alpha contacts promoter-bound TBP and interferes with later steps in the initiation of transcription.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Mapeamento Cromossômico , Humanos , Técnicas In Vitro , Ligantes , Modelos Biológicos , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Receptores dos Hormônios Tireóideos/genética , Proteína de Ligação a TATA-Box , Fator de Transcrição TFIIA , Fator de Transcrição TFIIB , Transcrição Gênica
11.
Nature ; 377(6545): 119-28, 1995 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-7675079

RESUMO

The crystal structure of the transcription factor IIB (TFIIB)/TATA box-binding protein (TBP)/TATA-element ternary complex is described at 2.7 A resolution. Core TFIIB resembles cyclin A, and recognizes the preformed TBP-DNA complex through protein-protein and protein-DNA interactions. The amino-terminal domain of core TFIIB forms the downstream surface of the ternary complex, where it could fix the transcription start site. The remaining surfaces of TBP and the TFIIB can interact with TBP-associated factors, other class II initiation factors, and transcriptional activators and coactivators.


Assuntos
Proteínas de Ligação a DNA/química , TATA Box , Fatores de Transcrição/química , Adenoviridae/genética , Sequência de Aminoácidos , Arabidopsis , Sequência de Bases , Cristalografia por Raios X , DNA , Escherichia coli , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes , Proteína de Ligação a TATA-Box , Fator de Transcrição TFIIB , Ativação Transcricional
12.
Proc Natl Acad Sci U S A ; 92(18): 8195-9, 1995 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-7667268

RESUMO

Human transcription initiation factor TFIID is composed of the TATA-binding polypeptide (TBP) and at least 13 TBP-associated factors (TAFs) that collectively or individually are involved in activator-dependent transcription. To investigate protein-protein interactions involved in TFIID assembly and in TAF-mediated activator functions, we have cloned and expressed cDNAs encoding human TAFII80 and TAFII31. Coimmunoprecipitation assays showed that TAFII80 interacted with TAFII250, TAFII31, TAFII20, and TBP, but not with TAFII55. Similar assays showed that TAFII80 interacted with TFIIE alpha and with TFIIF alpha (RAP74) but not with TFIIB, TFIIE beta, or TFIIF beta (RAP30). Further studies with TAFII80 mutations revealed three distinct interaction domains which fall within regions conserved in human TAFII80, Drosophila TAFII60, and yeast TAFII60. The N terminus of TAFII80 (residues 1-100) interacts with both TAFII31 and TAFII20, while two C-terminal regions are involved, respectively, in interactions with TAFII250 and TFIIF alpha (RAP74) (residues 203-276) and with TBP and TFIIE alpha (residues 377-505). The interactions between TAFII80 and general factors TFIIE alpha and TFIIF alpha (RAP74) could be important for recruitment of GTFs during activator-dependent transcription. Because TAFs 80, 31, and 20 show sequence similarities to histones H4, H3, and H2B, as well as some parallel interactions, this subset of TAFs may form a related core structure within TFIID.


Assuntos
Evolução Biológica , Proteínas de Ligação a DNA/genética , TATA Box , Fatores Associados à Proteína de Ligação a TATA , Transativadores/genética , Fator de Transcrição TFIID , Fatores de Transcrição/genética , Sequência de Aminoácidos , Animais , Baculoviridae/genética , Sequência de Bases , Linhagem Celular , Clonagem Molecular , DNA Complementar , Células HeLa , Humanos , Dados de Sequência Molecular , Spodoptera , Proteína de Ligação a TATA-Box , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
13.
Cancer Res ; 55(12): 2651-5, 1995 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-7780980

RESUMO

The glutathione transferase P (GST-P) gene is known for its specific expression during chemical hepatocarcinogenesis of the rat and is used as a tumor marker for hepatocellular carcinoma. We have shown recently that the upstream 2.9-kb region of the GST-P gene is sufficient for conferring tumor-specific expression of the gene in vivo (S. Morimura et al., Proc. Natl. Acad. Sci. USA, 90: 2065-2068, 1993). To further identify crucial sequence elements regulating the unique expression of this gene, we have established six independent lines of transgenic rats bearing distinct areas of the GST-P gene that are connected to the chloramphenicol acetyltransferase coding region and analyzed changes of the chloramphenicol acetyltransferase activity during the course of chemical hepatocarcinogenesis. We demonstrate here that the enhancer, glutathione transferase P enhancer I, that is located 2.5 kb upstream of the GST-P gene is required and sufficient for its tumor-specific expression of the gene among other controlling elements. This approach to transgene expression could be used to define other enhancers, the activity of which is dependent on cellular changes such as carcinogenesis, development, and differentiation.


Assuntos
Biomarcadores Tumorais/biossíntese , Elementos Facilitadores Genéticos , Regulação Neoplásica da Expressão Gênica , Glutationa Transferase/biossíntese , Neoplasias Hepáticas Experimentais/patologia , Animais , Animais Geneticamente Modificados , Sequência de Bases , Biomarcadores Tumorais/análise , Cloranfenicol O-Acetiltransferase/análise , Cloranfenicol O-Acetiltransferase/biossíntese , Dietilnitrosamina , Regulação Enzimológica da Expressão Gênica , Glutationa Transferase/análise , Isoenzimas/análise , Isoenzimas/biossíntese , Fígado/enzimologia , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/enzimologia , Masculino , Dados de Sequência Molecular , Ratos , Valores de Referência , Mapeamento por Restrição
14.
Biochem Biophys Res Commun ; 205(2): 1217-25, 1994 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-7802653

RESUMO

Transcription of the mouse Upstream Binding Factor (mUBF) gene, that encodes one of the essential transcription factors for ribosomal DNA transcription, starts from several nucleotides. Neither typical TATA-box nor CCAAT-box is found upstream of the transcription initiation site. In the promoter region, there are eight GC-boxes, eight AP-2 binding consensus sequences, four cAMP response elements, and several serum response element equivalent sequences. These elements appear to play a positive role for the regulation of the mUBF gene as a whole. Among serum response elements, members located between -1182 and -343 are indeed responsive to serum, suggesting their important role in the high expression of mUBF under cell growth conditions.


Assuntos
Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Camundongos/genética , Proteínas Pol1 do Complexo de Iniciação de Transcrição , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Animais , Sequência de Bases , Linhagem Celular , Cloranfenicol O-Acetiltransferase/biossíntese , Chlorocebus aethiops , Primers do DNA , Proteínas de Ligação a DNA/biossíntese , Cinética , Camundongos Endogâmicos C3H , Dados de Sequência Molecular , RNA Mensageiro/biossíntese , RNA Mensageiro/isolamento & purificação , Proteínas Recombinantes/biossíntese , Mapeamento por Restrição , TATA Box , Fatores de Transcrição/biossíntese , Transcrição Gênica , Transfecção
15.
Intern Med ; 33(9): 560-3, 1994 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-8000110

RESUMO

We evaluated insulin resistance and assessed the effect of gliclazide on insulin resistance in a patient with diabetes mellitus associated with Turner's syndrome. Insulin-induced glucose metabolism markedly decreased compared with 12 healthy subjects. The insulin dose-response curve of this patient shifted to the right and down, and recovered somewhat after the administration of gliclazide. This patient had exhibited marked insulin resistance, which seemed to be caused by a defect at the receptor and/or post-receptor levels. Gliclazide reduced her insulin resistance, which suggests that this agent is suitable for treating the insulin resistance in diabetic patients with Turner's syndrome.


Assuntos
Complicações do Diabetes , Gliclazida/uso terapêutico , Resistência à Insulina , Síndrome de Turner/complicações , Adulto , Diabetes Mellitus/tratamento farmacológico , Feminino , Técnica Clamp de Glucose , Intolerância à Glucose/complicações , Intolerância à Glucose/diagnóstico , Perda Auditiva Neurossensorial/etiologia , Humanos , Resistência à Insulina/genética , Resistência à Insulina/fisiologia , Compostos de Sulfonilureia/uso terapêutico
16.
Science ; 261(5120): 463-6, 1993 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-8332911

RESUMO

Transcription initiation factor TFIIB recruits RNA polymerase II to the promoter subsequent to interaction with a preformed TFIID-promoter complex. The domains of TFIIB required for binding to the TFIID-promoter complex and for transcription initiation have been determined. The carboxyl-terminal two-thirds of TFIIB, which contains two direct repeats and two basic residue repeats, is sufficient for interaction with the TFIID-promoter complex. An extra 84-residue amino-terminal region, with no obvious known structural motifs, is required for basal transcription activity. Basic residues within the second basic repeat of TFIIB are necessary for stable interaction with the TFIID-promoter complex, whereas the basic character of the first basic repeat is not. Functional roles of other potential structural motifs are discussed in light of the present study.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Drosophila , Dados de Sequência Molecular , Mutação , Ligação Proteica , Fator de Transcrição TFIIB , Fator de Transcrição TFIID
17.
Nature ; 363(6431): 744-7, 1993 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-8515820

RESUMO

The protein TFIIB is a general transcription initiation factor that interacts with a promoter complex (D.DNA) containing the TATA-binding subunit (TFIID tau, or TBP) of TFIID to facilitate subsequent interaction with RNA polymerase II (ref. 2) through the associated TFIIF (ref. 3). The potential bridging function of TFIIB raises the possibility of two structural domains and emphasizes the importance of TFIIB structure-function studies for a further understanding of preinitiation complex assembly and function. Here we show that human TFIIB (refs 5,6) is comprised of functionally distinct N- and C-terminal domains. The C-terminal domain, containing the direct repeats and associated basic regions, is necessary and sufficient for interaction with the D.DNA complex. By contrast, the N-terminal domain that is dispensable for formation of the TFIID tau-TFIIB-promoter (D.B.DNA) complex is required for subsequent events leading to basal transcription initiation. On the basis of these results, we discuss structural and functional similarities between TFIIB and TFIID tau, which have similar structural organization and motifs.


Assuntos
Fatores de Transcrição/metabolismo , Transcrição Gênica , Sítios de Ligação , DNA/metabolismo , Escherichia coli , Humanos , Regiões Promotoras Genéticas , RNA Polimerase III/metabolismo , Proteínas Recombinantes/metabolismo , Sequências Repetitivas de Ácido Nucleico , Deleção de Sequência , Relação Estrutura-Atividade , TATA Box , Fator de Transcrição TFIIB , Fator de Transcrição TFIID , Fatores de Transcrição/genética , Transcrição Gênica/genética
18.
Nature ; 362(6416): 179-81, 1993 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-8450888

RESUMO

The protein TFIID is a general transcription factor which initiates preinitiation complex assembly through direct interaction with the TATA promoter element. It is a multisubunit complex containing a small TATA-binding polypeptide (TBP) and other TBP-associated factors (TAFs) ranging in size from about 30-250K (refs 7-10). Although native TFIID can mediate both activator-independent (basal) and activator-dependent transcription in reconstituted systems, TBP itself can mediate only basal transcription, even in cases where TBP or the general factor TFIIB are known to interact directly with transcriptional activators. TFIID subunits other than TBP must therefore be essential cofactors, and thus potential targets for activators, consistent with earlier demonstrations that activators interact with TFIID (refs 3, 5, 16, 17). Here we show that the 250K subunit of TFIID is identical to a gene product previously implicated in progression through the late G1 phase of the cell cycle. Part of p250 may thus serve a specific function in the activation of a subset of genes important for cell cycle progression.


Assuntos
Ciclo Celular/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas Nucleares/genética , TATA Box , Fatores Associados à Proteína de Ligação a TATA , Fatores de Transcrição/genética , Sequência de Aminoácidos , Animais , Western Blotting , Proteínas de Ligação a DNA/isolamento & purificação , Proteínas de Ligação a DNA/metabolismo , Drosophila , Eletroforese em Gel de Poliacrilamida , Histona Acetiltransferases , Humanos , Substâncias Macromoleculares , Dados de Sequência Molecular , Peso Molecular , Proteínas Nucleares/isolamento & purificação , Proteínas Nucleares/metabolismo , Sequências Repetitivas de Ácido Nucleico , Homologia de Sequência de Aminoácidos , Fator de Transcrição TFIID , Fatores de Transcrição/isolamento & purificação , Fatores de Transcrição/metabolismo
19.
EMBO J ; 11(10): 3695-704, 1992 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-1396565

RESUMO

RNA polymerase I requires at least two nucleolar transcription factors, UBF and SL-1, for ribosomal RNA gene (rDNA) transcription. UBF requires SL-1 for the formation of a stable initiation complex on the rDNA promoter region. We have determined the region of mouse UBF (mUBF) required for nucleolar targeting. Although mUBF has a nuclear localization sequence, this sequence alone is not sufficient for mUBF to accumulate in the nucleolus. Deletion analyses show that mUBF requires a wide region except for the N-terminal 101 amino acids for nucleolar targeting. Deletion of either the HMG-box1, a region crucial for rDNA binding, or the acidic tail, a region that may interact with SL-1, results in the loss of nucleolar targeting. We show by DNA affinity analysis that the HMG-box1 is absolutely necessary for mUBF to bind to the upstream control element of the rDNA. We also show that mUBFs with various internal deletions retain both nucleolar targeting and DNA binding ability. A clear correlation was demonstrated between the DNA binding and nucleolar targeting ability. These results suggest that UBF is transferred to the nucleus by its NLS and is sequestered in the nucleolus by its specific and stable binding to the rDNA promoter via HMG-boxes and the acidic tail.


Assuntos
Nucléolo Celular/metabolismo , DNA Ribossômico/genética , Proteínas de Ligação a DNA/metabolismo , Genes Reguladores , Proteínas Pol1 do Complexo de Iniciação de Transcrição , RNA Ribossômico/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Sequência de Bases , Linhagem Celular , Proteínas de Ligação a DNA/genética , Humanos , Cinética , Camundongos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , Oligodesoxirribonucleotídeos , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , RNA Polimerase I/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Mapeamento por Restrição , Deleção de Sequência , Fatores de Transcrição/genética , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
20.
Proc Natl Acad Sci U S A ; 89(7): 2839-43, 1992 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-1557390

RESUMO

A Drosophila cDNA encoding a human transcription factor TFIIB homologue was isolated by PCR methods. The deduced amino acid sequence indicates 85% sequence similarity with human TFIIB, and the corresponding cDNA product expressed in Escherichia coli is interchangeable with human TFIIB for both basal and GAL4-VP16-induced transcription. Structural motifs including the direct repeats, basic repeats, and sigma sequence similarities are well conserved among Drosophila, human, and Xenopus TFIIB. However, the N-terminal region of each direct repeat is less conserved among the three species, suggesting the presence of two structural subdomains in the direct repeat. Moreover, the amino acid changes in the N-terminal subdomain produce altered positions of the conserved amino acids between the direct repeats. An overall similarity in general structural features between TFIIB and TFIID tau (the TATA-binding subunit of TFIID) was previously noted. However, in contrast to the sequence divergence reported for the N-terminal domains of TFIID tau from different species, the N-terminal sequence of TFIIB was highly conserved among the species. This suggests that TFIIB has a more rigid structure, consistent with its function as a "bridging" protein between TFIID and RNA polymerase II. Further implications of the TFIIB structure are discussed.


Assuntos
Drosophila melanogaster/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , DNA/genética , Proteínas de Ligação a DNA/genética , Expressão Gênica , Genes , Humanos , Dados de Sequência Molecular , Oligodesoxirribonucleotídeos/química , RNA Mensageiro/genética , Proteínas Recombinantes/biossíntese , Alinhamento de Sequência , Fator sigma/genética , Fator de Transcrição TFIIB , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA