Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(48): 19678-19689, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37956219

RESUMO

In this article, the recently published SPOTTER approach, which allows for identifying potential supply disruption impacts along the entire supply chain within life cycle sustainability assessment in the short term (i.e., < 5 years), is applied to a case study addressing the cobalt and aluminum supply chains of electric vehicles (EVs) used in Switzerland. Existing studies within the field assessing supply disruption impacts for EVs and other technologies focus on impacts related to raw material supply and thus neglect impacts along full supply chains. The present study identifies hotspots and overall impacts along the full supply chains by analyzing six supply disruption events (i.e., geopolitical instability, child labor restrictions, trade barriers, price volatility, limited recyclability, and economic resource depletion) for two impact categories (i.e., cost variability and limited availability). Identified hotspots suggest that supply chains are potentially disrupted mainly through events occurring in Asian, African, or other developing countries and affecting the Western economies. The highest risks are indicated in relation to the supply of EVs, EV wiring, traction batteries, cobalt powder, and cobalt ore. Suitable measures to mitigate these supply risks are suggested showing that some of the suggestions could not have been made based on the results of existing studies.


Assuntos
Cobalto , Meio Ambiente , Criança , Humanos , Eletricidade , Fontes de Energia Elétrica , Alumínio
2.
Environ Sci Technol ; 56(12): 8552-8560, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35657801

RESUMO

Today's scarcity of animal toxicological data for nanomaterials could be lifted by substituting in vivo data with in vitro data to calculate nanomaterials' effect factors (EF) for Life Cycle Assessment (LCA). Here, we present a step-by-step procedure to calculate in vitro-to-in vivo extrapolation factors to estimate human Benchmark Doses and subsequently in vitro-based EFs for several inhaled nonsoluble nanomaterials. Based on mouse data, the in vitro-based EF of TiO2 is between 2.76 · 10-4 and 1.10 · 10-3 cases/(m2/g·kg intake), depending on the aerodynamic size of the particle, which is in good agreement with in vivo-based EFs (1.51 · 10-4-5.6 · 10-2 cases/(m2/g·kg intake)). The EF for amorphous silica is in a similar range as for TiO2, but the result is less robust due to only few in vivo data available. The results based on rat data are very different, confirming the importance of selecting animal species representative of human responses. The discrepancy between in vivo and in vitro animal data in terms of availability and quality limits the coverage of further nanomaterials. Systematic testing on human and animal cells is needed to reduce the variability in toxicological response determined by the differences in experimental conditions, thus helping improve the predictivity of in vitro-to-in vivo extrapolation factors.


Assuntos
Nanoestruturas , Dióxido de Silício , Animais , Humanos , Estágios do Ciclo de Vida , Camundongos , Tamanho da Partícula , Ratos , Solubilidade , Titânio/toxicidade
3.
NanoImpact ; 25: 100385, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35559891

RESUMO

Expectations for safer and sustainable chemicals and products are growing to comply with the United Nations and European strategies for sustainability. The application of Safe(r) by Design (SbD) in nanotechnology implies an iterative process where functionality, human health and safety, environmental and economic impact and cost are assessed and balanced as early as possible in the innovation process and updated at each step. The EU H2020 NanoReg2 project was the first European project to implement SbD in six companies handling and/or manufacturing nanomaterials (NMs) and nano-enabled products (NEP). The results from this experience have been used to develop these guidelines on the practical application of SbD. The SbD approach foresees the identification, estimation, and reduction of human and environmental risks as early as possible in the development of a NM or NEP, and it is based on three pillars: (i) safer NMs and NEP; (ii) safer use and end of life and (iii) safer industrial production. The presented guidelines include a set of information and tools that will help deciding at each step of the innovation process whether to continue, apply SbD measures or carry out further tests to reduce uncertainty. It does not intend to be a prescriptive protocol where all suggested steps have to be followed to achieve a SbD NM/NEP or process. Rather, the guidelines are designed to identify risks at an early state and information to be considered to identify those risks. Each company adapts the approach to its specific needs and circumstances as company decisions influence the way forward.


Assuntos
Nanoestruturas , Nanotecnologia , Humanos , Indústrias , Nanoestruturas/efeitos adversos , Incerteza
5.
NanoImpact ; 23: 100335, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-35559836

RESUMO

Moving towards safe and sustainable innovations is an international policy ambition. In the on-hand manuscript, a concept combining safe by design and sustainability was implemented through the integration of human and environmental risk assessment, life cycle assessment as well as an assessment of the economic viability. The result is a nested and iterative process in form of a decision tree that integrates these three elements in order to achieve sustainable, safe and competitive materials, products or services. This approach, embedded into the stage-gate-model for safe by design, allows to reduce the uncertainty related to the assessment of risks and impacts by improving the quality of the data collected along each stage. In the second part of the manuscript, the application is shown for a case study dealing with the application of nanoparticles for Li-Ion batteries. One of the general conclusions out of this case study is that data gaps are a key aspect in view of the reliability of the results.


Assuntos
Nanoestruturas , Animais , Humanos , Estágios do Ciclo de Vida , Reprodutibilidade dos Testes , Medição de Risco/métodos , Fatores Socioeconômicos
6.
MethodsX ; 7: 101151, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33299806

RESUMO

The ecological resource potential (ERP) method allows to calculate the amount of one material that can potentially be produced within Earth system boundaries, if no other anthropogenic activity would take place. It indicates the uppermost potential of one resource extracted, processed and disposed after use with a specific set of technologies and a defined probability of violating Earth system boundaries. This method is an adaption of the ecological resource availability (ERA) method, which calculates the amount of a resource that can be produced within an allocated share of the global boundaries, i.e. when considering all other anthropogenic activities. While more realistic, its allocation can be done in multiple ways and based on a variety of different objectives, which requires scenario modelling. The ERP method, in contrary, only requires information on environmental impacts from resource extraction, processing, and final disposal. The customization of the original ERA method comprises:•Omitting all steps for allocating global boundaries to single resources or resource segments.•Changing the calculation procedure so that ERP is calculated for each resource separately.

7.
J Clean Prod ; 267: 121952, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32921932

RESUMO

Assessing the environmental impact due to consumption of goods and services is a pivotal step towards achieving the sustainable development goal related to responsible production and consumption (i.e. SDG 12). Household appliances plays a crucial role and should be assessed in a systemic manner, namely considering all life cycle stages, technological efficiency, and affluence aspects. The present study assess the impact of such household appliances used in Europe, and tests scenarios of potential impact reduction at various scales. Life cycle assessment is applied to 14 different household appliances (ranging from dishwashers to television devices) selected to build a set of representative products, based on their economic value and diffusion in households in Europe. Related impacts are calculated with the Environmental Footprint method for calculating a Consumer Footprint "appliances" for the baseline year 2010. A number of scenarios encompassing eco-solutions on a technical level, changes in consumption pattern, behavioral changes, as well as the combination of all these aspects are run to estimate the Consumer Footprint related to household appliances for the year 2030, compared against this baseline scenario. The baseline Consumer Footprint is confirming the importance of the use phase in leading the impacts in almost all impact categories. Testing different scenarios concludes that there is a reduction of the impact for most of the categories (with up to 67% for the ozone depletion potential, and still around 35% for the global warming potential), while two of the here examined impact categories (i.e. land-use and mineral resource depletion) show an overall potential that is even negative - i.e. the results of all scenarios are higher than the ones of the 2010 baseline scenario. The increase in purchase and use of such appliances may offset energy efficiency benefits in some of the examined categories. Hence, the assessment of sustainability of appliances consumption should always include several scales, from the efficiency of the products (micro scale), to the improvement of the energy mix (meso scale), up to accounting for socio-economic drivers and patterns of consumption affecting the overall appliances stock (macro scale).

8.
Environ Int ; 137: 105505, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32014789

RESUMO

In line with the 3R concept, nanotoxicology is shifting from a phenomenological to a mechanistic approach based on in vitro and in silico methods, with a consequent reduction in animal testing. Risk Assessment (RA) and Life Cycle Assessment (LCA) methodologies, which traditionally rely on in vivo toxicity studies, will not be able to keep up with the pace of development of new nanomaterials unless they adapt to use this new type of data. While tools and models are already available and show a great potential for future use in RA and LCA, currently none is able alone to quantitatively assess human hazards (i.e. calculate chronic NOAEL or ED50 values). By highlighting which models and approaches can be used in a quantitative way with the available knowledge and data, we propose an integrated pathway for the use of in vitro data in RA and LCA. Starting with the characterization of nanoparticles' properties, the pathway then investigates how to select relevant in vitro human data, and how to bridge in vitro dose-response relationships to in vivo effects. If verified, this approach would allow RA and LCA to stir up the development of nanotoxicology by giving indications about the data and quality requirements needed in risk methodologies.


Assuntos
Simulação por Computador , Nanoestruturas , Medição de Risco , Animais , Humanos , Nanoestruturas/toxicidade , Nível de Efeito Adverso não Observado , Testes de Toxicidade
9.
Nanotoxicology ; 14(2): 275-286, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31928272

RESUMO

The major theme of the NRC report "Toxicity Testing in the Twenty-first Century" is to replace animal testing by using alternative in vitro methods. Therefore, it can be expected that in the future in vivo data will be replaced with in vitro data. Hence, there is a need for new strategies to make use of the increasing amount of in vitro data when developing human toxicological effect factors (HEF) to characterize the impact category of human toxicity in life cycle assessment (LCA). Here, we present a new approach for deriving HEF for manufactured nanomaterials (MNMs) based on the combined use of in vitro toxicity data and a relative potency factor (RPF) approach. In vitro toxicity tests with nano-CuO, nano-Ag and nano-ZnO and their corresponding ions were performed on THP-1, CaCo-2 and Hep-G2 cell lines. The ratio of the here calculated EC50 of the ionic form and the nanoform corresponds to the Relative Potency Factor (RPF). Using this approach, HEFs (case/kgintake) for the aforementioned nanoparticles were obtained. Non-carcinogenic HEFs (case/kgintake) for exposure via ingestion of 5.9E-01, 7.5E-03 and 2.5 E-02 were calculated for nano-Ag, nano-CuO and nano-ZnO, respectively. The HEF values here proposed were compared with HEF values extrapolated from in vivo toxicity data reported in the literature. The here presented procedure is the most appropriate approximation currently available for using in vitro toxicity data on MNM for application in the field of LCIA.


Assuntos
Cobre/toxicidade , Manufaturas/toxicidade , Nanopartículas Metálicas/toxicidade , Modelos Teóricos , Prata/toxicidade , Óxido de Zinco/toxicidade , Animais , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Íons , Medição de Risco , Células THP-1 , Testes de Toxicidade
10.
ACS Nano ; 12(11): 10582-10620, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30387986

RESUMO

Graphene and its derivatives are heralded as "miracle" materials with manifold applications in different sectors of society from electronics to energy storage to medicine. The increasing exploitation of graphene-based materials (GBMs) necessitates a comprehensive evaluation of the potential impact of these materials on human health and the environment. Here, we discuss synthesis and characterization of GBMs as well as human and environmental hazard assessment of GBMs using in vitro and in vivo model systems with the aim to understand the properties that underlie the biological effects of these materials; not all GBMs are alike, and it is essential that we disentangle the structure-activity relationships for this class of materials.


Assuntos
Monitoramento Ambiental , Grafite/efeitos adversos , Saúde , Nanoestruturas/efeitos adversos , Nanoestruturas/química , Animais , Grafite/química , Humanos , Teste de Materiais , Medição de Risco , Relação Estrutura-Atividade
11.
ChemSusChem ; 11(13): 2068-2076, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29737016

RESUMO

Results of an early-stage sustainability evaluation of two development strategies for new nanoscale cathode materials for Li-ion batteries are reported: (i) a new production pathway for an existing material (LiCoO2 ) and (ii) a new nanomaterial (LiMnPO4 ). Nano-LiCoO2 was synthesized by a single-source precursor route at a low temperature with a short reaction time, which results in a smaller grain size and, thereby, a better diffusivity for Li ions. Nano-LiMnPO4 was synthesized by a wet chemical method. The sustainability potential of these materials was then investigated (at the laboratory and pilot production scales). The results show that the environmental impact of nano-LiMnPO4 is lower than that of the other examined nanomaterial by several factors regardless of the indicator used for comparison. In contrast to commercial cathode materials, this new material shows, particularly on an energy and capacity basis, results of the same order of magnitude as those of lithium manganese oxide (LiMn2 O4 ) and only slightly higher values than those for lithium iron phosphate (LiFePO4 ); values that are clearly lower than those for high-temperature LiCoO2 .

12.
Environ Sci Technol ; 52(10): 5959-5967, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29630826

RESUMO

We present here a new eco-efficiency process-improvement method to highlight combined environmental and costs hotspots of the production process of new material at a very early development stage. Production-specific and scaled-up results for life cycle assessment (LCA) and production costs are combined in a new analysis to identify synergetic improvement potentials and trade-offs, setting goals for the eco-design of new processes. The identified hotspots and bottlenecks will help users to focus on the relevant steps for improvements from an eco-efficiency perspective and potentially reduce their associated environmental impacts and production costs. Our method is illustrated with a case study of nanocellulose. The results indicate that the production route should start with carrot pomace, use heat and solvent recovery, and deactivate the enzymes with bleach instead of heat. To further improve the process, the results show that focus should be laid on the carrier polymer, sodium alginate, and the production of the GripX coating. Overall, the method shows that the underlying LCA scale-up framework is valuable for purposes beyond conventional LCA studies and is applicable at a very early stage to provide researchers with a better understanding of their production process.


Assuntos
Meio Ambiente
13.
Environ Int ; 91: 150-60, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26949868

RESUMO

The fast penetration of nanoproducts on the market under conditions of significant uncertainty of their environmental properties and risks to humans creates a need for companies to assess sustainability of their products. Evaluation of the potential benefits and risks to build a coherent story for communication with clients, authorities, consumers, and other stakeholders is getting to be increasingly important, but SMEs often lack the knowledge and expertise to assess risks and communicate them appropriately. This paper introduces LICARA nanoSCAN, a modular web based tool that supports SMEs in assessing benefits and risks associated with new or existing nanoproducts. This tool is unique because it is scanning both the benefits and risks over the nanoproducts life cycle in comparison to a reference product with a similar functionality in order to enable the development of sustainable and competitive nanoproducts. SMEs can use data and expert judgment to answer mainly qualitative and semi-quantitative questions as a part of tool application. Risks to public, workers and consumers are assessed, while the benefits are evaluated for economic, environmental and societal opportunities associated with the product use. The tool provides an easy way to visualize results as well as to identify gaps, missing data and associated uncertainties. The LICARA nanoSCAN has been positively evaluated by several companies and was tested in a number of case studies. The tool helps to develop a consistent and comprehensive argument on the weaknesses and strengths of a nanoproduct that may be valuable for the communication with authorities, clients and among stakeholders in the value chain. LICARA nanoSCAN identifies areas for more detailed assessments, product design improvement or application of risk mitigation measures.


Assuntos
Nanoestruturas , Medição de Risco , Software , Humanos , Incerteza
14.
Sci Total Environ ; 529: 158-67, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26022405

RESUMO

Plastics play an increasingly important role in reaching the recovery and recycling rates defined in the European WEEE Directive. In a recent study we have determined the life cycle environmental impacts of post-consumer plastics production from mixed, plastics-rich WEEE treatment residues in the Central European plant of a market-leading plastics recycler, both from the perspective of the customers delivering the residues and the customers buying the obtained post-consumer recycled plastics. The results of our life cycle assessments, which were extensively tested with sensitivity analyses, show that from both perspectives plastics recycling is clearly superior to the alternatives considered in this study (i.e. municipal solid waste incineration (MSWI) and virgin plastics production). For the three ReCiPe endpoint damage categories, incineration in an MSWI plant results in an impact exceeding that of the examined plastics recycling facility each by about a factor of 4, and the production of virgin plastics has an impact exceeding that of the post-consumer recycled (PCR) plastics production each by a factor of 6-10. On a midpoint indicator level the picture is more differentiated, showing that the environmental impacts of the recycling options are lower by 50% and more for almost all impact factors. While this provides the necessary evidence for the environmental benefits of plastics recycling compared to existing alternatives, it can, however, not be taken as conclusive evidence. To be conclusive, future research will have to address the fate of hazardous substances in the outputs of such recycling systems in more detail.


Assuntos
Conservação dos Recursos Naturais/métodos , Resíduo Eletrônico/estatística & dados numéricos , Plásticos , Reciclagem/métodos , Poluentes Ambientais/análise , Incineração , Gerenciamento de Resíduos
15.
Sci Total Environ ; 425: 271-82, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22483746

RESUMO

The use of engineered nanomaterials offers advantages as well as disadvantages from a sustainability perspective. It is important to identify such points as early as possible in order to be able to build on existing strengths, while counteracting disadvantages. Life Cycle Assessment (LCA) is a suitable method to assess the environmental performance of a product or process. But so far studies applying LCA to the area of nanotechnology have been scarce. One reason might be that the LCA framework has a whole list of issues that need further precision in order to be applicable to nanotechnologies: system boundaries and a functional unit have to be chosen in a way that allows one to do a comparison of equal functionalities; adequate and comprehensive life cycle inventory data for engineered nanomaterials are the key on the level of inventory analysis; and the impact assessment step requires a clear definition of the degree of detail on the level of nanoparticle emissions. The LCA studies existing thus far in the area of nanotechnology have barely begun to cover all these aspects. Thus, in order to improve the current situation, the authors propose to go ahead in each of the LCA stages as far as scientific advances allow. For the inventory modelling this means e.g. that comprehensive, transparently documented and quality ensured data of the most important engineered nanomaterials should be collected and made available in a widely-accepted format. Concerning nanoparticle emissions, as many parameters as possible have to be collected pertaining to the production, use, and the disposal phase of these engineered nanomaterials. Furthermore, on the level of impact assessment, relevant physical characteristics have to be identified for a toxicity assessment of nanoparticles and a consensus has to be found for a limited but sufficient number of independent parameters influencing toxicity to be collected.

16.
Sci Total Environ ; 407(5): 1755-64, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19070352

RESUMO

Associated with the tremendous prosperity in world electronic information and telecommunication industry, there continues to be an increasing awareness of the environmental impacts related to the accelerating mass production, electricity use, and waste management of electronic and electric products (e-products). China's importance as both a consumer and supplier of e-products has grown at an unprecedented pace in recent decade. Hence, this paper aims to describe the application of life cycle assessment (LCA) to investigate the environmental performance of Chinese e-products from a global level. A desktop personal computer system has been selected to carry out a detailed and modular LCA which follows the ISO 14040 series. The LCA is constructed by SimaPro software version 7.0 and expressed with the Eco-indicator'99 life cycle impact assessment method. For a sensitivity analysis of the overall LCA results, the so-called CML method is used in order to estimate the influence of the choice of the assessment method on the result. Life cycle inventory information is complied by ecoinvent 1.3 databases, combined with literature and field investigations on the present Chinese situation. The established LCA study shows that that the manufacturing and the use of such devices are of the highest environmental importance. In the manufacturing of such devices, the integrated circuits (ICs) and the Liquid Crystal Display (LCD) are those parts contributing most to the impact. As no other aspects are taken into account during the use phase, the impact is due to the way how the electricity is produced. The final process steps--i.e. the end of life phase--lead to a clear environmental benefit if a formal and modern, up-to-date technical system is assumed, like here in this study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...