Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 18(26): 17159-68, 2016 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-27306298

RESUMO

The diffusion of ammonia in commercial NH3-SCR catalyst Cu-CHA was measured and compared with H-CHA using quasielastic neutron scattering (QENS) and molecular dynamics (MD) simulations to assess the effect of counterion presence on NH3 mobility in automotive emission control relevant zeolite catalysts. QENS experiments observed jump diffusion with a jump distance of 3 Å, giving similar self-diffusion coefficient measurements for both Cu- and H-CHA samples, in the range of ca. 5-10 × 10(-10) m(2) s(-1) over the measured temperature range. Self-diffusivities calculated by MD were within a factor of 6 of those measured experimentally at each temperature. The activation energies of diffusion were also similar for both studied systems: 3.7 and 4.4 kJ mol(-1) for the H- and Cu-chabazite respectively, suggesting that counterion presence has little impact on ammonia diffusivity on the timescale of the QENS experiment. An explanation is given by the MD simulations, which showed the strong coordination of NH3 with Cu(2+) counterions in the centre of the chabazite cage, shielding other molecules from interaction with the ion, and allowing for intercage diffusion through the 8-ring windows (consistent with the experimentally observed jump length) to carry on unhindered.

2.
J Colloid Interface Sci ; 417: 88-99, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24407663

RESUMO

Gas sorption scanning curves are increasingly used as a means to supplement the pore structural information implicit in boundary adsorption and desorption isotherms to obtain more detailed pore space descriptors for disordered solids. However, co-operative adsorption phenomena set fundamental limits to the level of information that conventional scanning curve experiments can deliver. In this work, we use the novel integrated gas sorption and mercury porosimetry technique to show that crossing scanning curves are obtained for some through ink-bottle pores within a disordered solid, thence demonstrating that their shielded pore bodies are undetectable using conventional scanning experiments. While gas sorption alone was not sensitive enough to detect these pore features, the integrated technique was, and, thence, this synergistic method is more powerful than the two individual techniques applied separately. The integrated method also showed how the appropriate filling mechanism equation (e.g. meniscus geometry for capillary condensation equations), to use to convert filling pressure to pore size, varied with position along the adsorption branch, thereby enabling avoidance of the further systematic error introduced into PSDs by assuming a single filling mechanism for disordered solids.

3.
Langmuir ; 26(23): 18061-70, 2010 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-21043443

RESUMO

The conversion of gas adsorption isotherms into pore size distributions generally relies upon the assumption of thermodynamically independent pores. Hence, pore-pore cooperative adsorption effects, which might result in a significantly skewed pore size distribution, are neglected. In this work, cooperative adsorption effects in water adsorption on a real, amorphous, mesoporous silica material have been studied using magnetic resonance imaging (MRI) and pulsed-gradient stimulated-echo (PGSE) NMR techniques. Evidence for advanced adsorption can be seen directly using relaxation time weighted MRI. The number and spatial distributions of pixels containing pores of different sizes filled with condensate have been analyzed. The spatial distribution of filled pores has been found to be highly nonrandom. Pixels containing the largest pores present in the material have been observed to fill in conjunction with pixels containing much smaller pores. PGSE NMR has confirmed the spatially extensive nature of the adsorbed ganglia. Thus, long-range (≥40 µm) cooperative adsorption effects, between larger pores associated with smaller pores, occur within mesoporous materials. The NMR findings have also suggested particular types of pore filling mechanisms occur within the porous solid studied.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Adsorção , Catálise , Difusão , Gases , Imageamento por Ressonância Magnética/métodos , Porosidade , Pressão , Propriedades de Superfície , Termodinâmica , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA