Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Eng Des Sel ; 342021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33825883

RESUMO

Moloney murine leukemia virus (MMLV) reverse transcriptase (RT) is widely used in research and clinical diagnosis. Improvement of MMLV RT thermostability has been an important topic of research for increasing the efficiency of cDNA synthesis. In this study, we attempted to increase MMLV RT thermostability by introducing a disulfide bridge in its RNase H region using site-directed mutagenesis. Five variants were designed, focusing on the distance between the two residues to be mutated into cysteine. The variants were expressed in Escherichia coli and purified. A551C/T662C was determined to be the most thermostable variant.


Assuntos
Vírus da Leucemia Murina de Moloney , DNA Polimerase Dirigida por RNA , Animais , Dissulfetos , Camundongos , Vírus da Leucemia Murina de Moloney/genética , Mutagênese Sítio-Dirigida , DNA Polimerase Dirigida por RNA/genética , Ribonuclease H/genética
2.
FEBS J ; 281(14): 3113-25, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24835339

RESUMO

The last two steps of l-tryptophan (Trp) biosynthesis are catalyzed by Trp synthase, a heterotetramer composed of TrpA and TrpB. TrpB catalyzes the condensation of indole, synthesized by TrpA, and serine to Trp. In the hyperthermophilic archaeon Thermococcus kodakarensis, trpA and trpB (trpB1) are located adjacently in the trpCDEGFB1A operon. Interestingly, several organisms possess a second trpB gene (trpB2) encoding TrpB2, located outside of the trp operon in T. kodakarensis. Until now, the physiological function of trpB2 has not been examined genetically. In the present study, we report the biochemical and physiological analyses of TrpB2 from T. kodakarensis. Kinetic analysis indicated that TrpB2 catalyzed the TrpB reaction but did not interact with TrpA as in the case of TrpB1. When growth phenotypes were examined for gene disruption strains, the double-deletion mutant (ΔtrpB1ΔtrpB2) displayed Trp auxotrophy, whereas individual single mutants (ΔtrpB1 and ΔtrpB2 strains) did not. It has been proposed previously that, in Thermotoga maritima, TrpB2 provides an alternate route to generate Trp from serine and free indole (indole salvage). To accurately examine the capacity of TrpB1 and TrpB2 in Trp synthesis via indole salvage, we constructed ΔtrpEB1 and ΔtrpEB2 strains using strain KUW1 (ΔpyrFΔtrpE) as a host, eliminating the route for endogenous indole synthesis. Indole complemented the Trp auxotrophies of ΔtrpEB1 (ΔpyrFΔtrpEΔtrpB1) and ΔtrpEB2 (ΔpyrFΔtrpEΔtrpB2) to similar levels. The results indicate that TrpB1 and TrpB2 both contribute to Trp biosynthesis in T. kodakarensis and can utilize free indole, and that indole salvage does not necessarily rely on TrpB2 to a greater extent.


Assuntos
Subunidades Proteicas/metabolismo , Triptofano Sintase/química , Triptofano/biossíntese , Sequência de Aminoácidos , Indóis/metabolismo , Cinética , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Thermococcus/enzimologia , Thermococcus/genética , Thermotoga maritima/enzimologia , Triptofano Sintase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA