Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 1033: 47-65, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23996170

RESUMO

Electron crystallography is a powerful technique for studying the structure and function of membrane proteins, not only in the ground state, but also in active conformations. When combined with high-resolution structures obtained by X-ray crystallography, electron crystallography can provide insights into the mechanism of the protein. In this chapter we discuss obtaining a three-dimensional map of membrane proteins by electron crystallography and how to combine these maps with atomic resolution models in order to study the function of membrane proteins. We argue that this approach is particularly powerful as it combines the high resolution attainable by X-ray crystallography with the visualization of the subject in the near-native environment of the membrane, by electron cryo-microscopy. This point has been illustrated by the analysis of the protein translocation complex SecYEG.


Assuntos
Microscopia Crioeletrônica , Cristalografia por Raios X , Proteínas de Membrana/química , Proteínas de Escherichia coli/química , Processamento de Imagem Assistida por Computador/métodos , Modelos Moleculares , Conformação Proteica , Controle de Qualidade , Canais de Translocação SEC
2.
Cell Rep ; 1(1): 21-8, 2012 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-22576621

RESUMO

The Sec complex forms the core of a conserved machinery coordinating the passage of proteins across or into biological membranes. The bacterial complex SecYEG interacts with the ATPase SecA or translating ribosomes to translocate secretory and membrane proteins accordingly. A truncated preprotein competes with the physiological full-length substrate and primes the protein-channel complex for transport. We have employed electron cryomicroscopy of two-dimensional crystals to determine the structure of the complex unlocked by the preprotein. Its visualization in the native environment of the membrane preserves the active arrangement of SecYEG dimers, in which only one of the two channels is occupied by the polypeptide substrate. The signal sequence could be identified along with the corresponding conformational changes in SecY, including relocation of transmembrane segments 2b and 7 as well as the plug, which presumably then promote channel opening. Therefore, we propose that the structure describes the translocon unlocked by preprotein and poised for protein translocation.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Precursores de Proteínas/metabolismo , Sequência de Aminoácidos , Cristalização , Cristalografia por Raios X , Proteínas de Escherichia coli/ultraestrutura , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/metabolismo , Ligação Proteica , Multimerização Proteica , Sinais Direcionadores de Proteínas , Estrutura Secundária de Proteína , Transporte Proteico , Canais de Translocação SEC , Ativação Transcricional/genética
3.
EMBO J ; 30(2): 439-49, 2011 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-21151096

RESUMO

We have determined the structure of the archaeal sodium/proton antiporter NhaP1 at 7 Å resolution by electron crystallography of 2D crystals. NhaP1 is a dimer in the membrane, with 13 membrane-spanning α-helices per protomer, whereas the distantly related bacterial NhaA has 12. Dimer contacts in the two antiporters are very different, but the structure of a six-helix bundle at the tip of the protomer is conserved. The six-helix bundle of NhaA contains two partially unwound α-helices thought to harbour the ion-translocation site, which is thus similar in NhaP1. A model of NhaP1 based on detailed sequence comparison and the NhaA structure was fitted to the 7 Å map. The additional N-terminal helix 1 of NhaP1, which appears to be an uncleaved signal sequence, is located near the dimer interface. Similar sequences are present in many eukaryotic homologues of NhaP1, including NHE1. Although fully folded and able to dimerize, NhaP1 constructs without helix 1 are inactive. Possible reasons are investigated and discussed.


Assuntos
Mathanococcus/genética , Modelos Moleculares , Família Multigênica/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Trocadores de Sódio-Hidrogênio/ultraestrutura , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Sequência Conservada/genética , Cristalografia , Primers do DNA/genética , Dimerização , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Alinhamento de Sequência , Análise de Sequência de DNA , Trocadores de Sódio-Hidrogênio/genética , Especificidade da Espécie
4.
J Mol Biol ; 388(3): 659-72, 2009 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-19396973

RESUMO

NhaA, the main sodium-proton exchanger in the inner membrane of Escherichia coli, regulates the cytosolic concentrations of H+ and Na+. It is inactive at acidic pH, becomes active between pH 6 and pH 7, and reaches maximum activity at pH 8. By cryo-electron microscopy of two-dimensional crystals grown at pH 4 and incubated at higher pH, we identified two sequential conformational changes in the protein in response to pH or substrate ions. The first change is induced by a rise in pH from 6 to 7 and marks the transition from the inactive state to the pH-activated state. pH activation, which precedes the ion-induced conformational change, is accompanied by an overall expansion of the NhaA monomer and a local ordering of the N-terminus. The second conformational change is induced by the substrate ions Na+ and Li+ at pH above 7 and involves a 7-A displacement of helix IVp. This movement would cause a charge imbalance at the ion-binding site that may trigger the release of the substrate ion and open a periplasmic exit channel.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/química , Trocadores de Sódio-Hidrogênio/química , Regulação Alostérica , Microscopia Crioeletrônica , Cristalização , Proteínas de Escherichia coli/ultraestrutura , Concentração de Íons de Hidrogênio , Modelos Moleculares , Conformação Proteica , Trocadores de Sódio-Hidrogênio/ultraestrutura
5.
J Mol Biol ; 386(2): 351-65, 2009 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-19135453

RESUMO

NhaA, the main sodium-proton exchanger in the inner membrane of Escherichia coli, regulates the cytosolic concentrations of H and Na. It is inactive at acidic pH, becomes active between pH 6 and pH 7, and reaches maximum activity at pH 8. By cryo-electron microscopy of two-dimensional crystals grown at pH 4 and incubated at higher pH, we identified two sequential conformational changes in the protein in response to pH or substrate ions. The first change is induced by a rise in pH from 6 to 7 and marks the transition from the inactive state to the pH-activated state. pH activation, which precedes the ion-induced conformational change, is accompanied by an overall expansion of the NhaA monomer and a local ordering of the N-terminus. The second conformational change is induced by the substrate ions Na and Li at pH above 7 and involves a 7-A displacement of helix IVp. This movement would cause a charge imbalance at the ion-binding site that may trigger the release of the substrate ion and open a periplasmic exit channel.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/fisiologia , Trocadores de Sódio-Hidrogênio/química , Microscopia Crioeletrônica , Proteínas de Escherichia coli/ultraestrutura , Concentração de Íons de Hidrogênio , Modelos Moleculares , Conformação Proteica , Estrutura Terciária de Proteína , Prótons , Sódio , Trocadores de Sódio-Hidrogênio/ultraestrutura
6.
J Struct Biol ; 153(1): 73-84, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16361109

RESUMO

The centralspindlin complex is required for the assembly and maintenance of the central spindle during late anaphase and the completion of cytokinesis. It is composed of two copies each of the kinesin-like protein ZEN-4, a Caenorhabditis elegans MKLP-1 (Kinesin-6 family), and the RhoGAP CYK-4. By using cryo-electron microscopy and helical 3D reconstruction, we are investigating the structural features of the interactions between monomeric and dimeric motor domain constructs of ZEN-4 and microtubules. We have calculated helically averaged 3D maps of microtubules decorated with ZEN-4 motor domain in the presence of AMP-PNP, ADP, ADP-AlF(4)(-), and nucleotide-free conditions. We used statistical difference mapping to compare these maps among each other and to related maps obtained from microtubules decorated with a well-characterized Kinesin-1 motor domain from Neurospora crassa. Thereby, we found distinct structural features in microtubule-ZEN-4 complexes that may directly relate to the functional properties of ZEN-4 and centralspindlin. Furthermore, we investigated the location, structure, and function of a highly conserved extension of approximately 50 residues unique to the Kinesin-6 subfamily, located in the motor core loop6/beta4 region.


Assuntos
Proteínas de Caenorhabditis elegans/química , Cinesinas/química , Microtúbulos/química , Difosfato de Adenosina/análogos & derivados , Difosfato de Adenosina/metabolismo , Adenilil Imidodifosfato/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas de Caenorhabditis elegans/metabolismo , Sequência Conservada , Microscopia Crioeletrônica , Dimerização , Proteínas Fúngicas/química , Imageamento Tridimensional , Cinesinas/metabolismo , Computação Matemática , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Modelos Moleculares , Dados de Sequência Molecular , Neurospora crassa/química , Compostos Organometálicos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Homologia Estrutural de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...