Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 672: 244-255, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38838632

RESUMO

HYPOTHESIS: Nonionic surfactants can counter the deleterious effect that anionic surfactants have on proteins, where the folded states are retrieved from a previously unfolded state. However, further studies are required to refine our understanding of the underlying mechanism of the refolding process. While interactions between nonionic surfactants and tightly folded proteins are not anticipated, we hypothesized that intermediate stages of surfactant-induced unfolding could define new interaction mechanisms by which nonionic surfactants can further alter protein conformation. EXPERIMENTS: In this work, the behavior of three model proteins (human growth hormone, bovine serum albumin, and ß-lactoglobulin) was investigated in the presence of the anionic surfactant sodium dodecylsulfate, the nonionic surfactant ß-dodecylmaltoside, and mixtures of both surfactants. The transitions occurring to the proteins were determined using intrinsic fluorescence spectroscopy and far-UV circular dichroism. Based on these results, we developed a detailed interaction model for human growth hormone. Using nuclear magnetic resonance and contrast-variation small-angle neutron scattering, we studied the amino acid environment and the conformational state of the protein. FINDINGS: The results demonstrate the key role of surfactant cooperation in defining the conformational state of the proteins, which can shift away or toward the folded state depending on the nonionic-to-ionic surfactant ratio. Dodecylmaltoside, initially a non-interacting surfactant, can unexpectedly associate with sodium dodecylsulfate-unfolded proteins to further impact their conformation at low nonionic-to-ionic surfactant ratio. When this ratio increases, the protein begins to retrieve the folded state. However, the native conformation cannot be fully recovered due to remnant surfactant molecules still adsorbed to the protein. This study demonstrates that the conformational landscape of the protein depends on a delicate interplay between the surfactants, ultimately controlled by the ratio between them, resulting in unpredictable changes in the protein conformation.

2.
Mol Pharm ; 19(3): 904-917, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35104408

RESUMO

Understanding of peptide aggregation propensity is an important aspect in pharmaceutical development of peptide drugs. In this work, methodologies based on all-atom molecular dynamics (AA-MD) simulations and 1H NMR (in neat H2O) were evaluated as tools for identification and investigation of peptide aggregation. A series of structurally similar, pharmaceutically relevant peptides with known differences in aggregation behavior (D-Phe6-GnRH, ozarelix, cetrorelix, and degarelix) were investigated. The 1H NMR methodology was used to systematically investigate variations in aggregation with peptide concentration and time. Results show that 1H NMR can be used to detect the presence of coexisting classes of aggregates and the inclusion or exclusion of counterions in peptide aggregates. Interestingly, results suggest that the acetate counterions are included in aggregates of ozarelix and cetrorelix but not in aggregates of degarelix. The peptides investigated in AA-MD simulations (D-Phe6-GnRH, ozarelix, and cetrorelix) showed the same rank order of aggregation propensity as in the NMR experiments. The AA-MD simulations also provided molecular-level insights into aggregation dynamics, aggregation pathways, and the influence of different structural elements on peptide aggregation propensity and intermolecular interactions within the aggregates. Taken together, the findings from this study illustrate that 1H NMR and AA-MD simulations can be useful, complementary tools in early evaluation of aggregation propensity and formulation development for peptide drugs.


Assuntos
Simulação de Dinâmica Molecular , Espectroscopia de Ressonância Magnética , Espectroscopia de Prótons por Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...