Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 138(6): 064303, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23425467

RESUMO

The cavity ringdown absorption spectrum of acrolein (propenal, CH(2)=CH-CH=O) was recorded near 412 nm, under bulk-gas conditions at room temperature and in a free-jet expansion. The measured spectral region includes the 0(0)(0) band of the T(1)(n, π*) ← S(0) system. We analyzed the 0(0)(0) rotational contour by using the STROTA computer program [R. H. Judge et al., J. Chem. Phys. 103, 5343 (1995)], which incorporates an asymmetric rotor Hamiltonian for simulating and fitting singlet-triplet spectra. We used the program to fit T(1)(n, π*) inertial constants to the room-temperature contour. The determined values (cm(-1)), with 2σ confidence intervals, are A = 1.662 ± 0.003, B = 0.1485 ± 0.0006, C = 0.1363 ± 0.0004. Linewidth analysis of the jet-cooled spectrum yielded a value of 14 ± 2 ps for the lifetime of isolated acrolein molecules in the T(1)(n, π*), v = 0 state. We discuss the observed lifetime in the context of previous computational work on acrolein photochemistry. The spectroscopically derived inertial constants for the T(1)(n, π*) state were used to benchmark a variety of computational methods. One focus was on complete active space methods, such as complete active space self-consistent field (CASSCF) and second-order perturbation theory with a CASSCF reference function (CASPT2), which are applicable to excited states. We also examined the equation-of-motion coupled-cluster and time-dependent density function theory excited-state methods, and finally unrestricted ground-state techniques, including unrestricted density functional theory and unrestricted coupled-cluster theory with single and double and perturbative triple excitations. For each of the above methods, we or others [O. S. Bokareva et al., Int. J. Quantum Chem. 108, 2719 (2008)] used a triple zeta-quality basis set to optimize the T(1)(n, π*) geometry of acrolein. We find that the multiconfigurational methods provide the best agreement with fitted inertial constants, while the economical unrestricted Perdew-Burke-Ernzerhof exchange-correlation hybrid functional (UPBE0) technique performs nearly as well.

2.
J Phys Chem A ; 113(47): 13318-26, 2009 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-19735120

RESUMO

The cavity ringdown absorption spectrum of 4-cyclopentene-1,3-dione was recorded near 487 nm in a room-temperature gas cell. The very weak band system (epsilon approximately 0.05 dm3 mol-1 cm-1) in this region is due to the T1(n,pi*) <-- S0 electronic transition. The origin-band maximum was observed at 20540.0 +/- 0.5 cm-1. We have assigned about 40 vibronically resolved bands in a region extending to +1100 cm-1 relative to the origin. Assignments were aided by quantum-chemical calculations of the T1 <-- S0 0-0 excitation energy as well as ground-state vibrational frequencies. From the CRD spectral assignments, we determined fundamental frequencies for several vibrational modes in the T1 excited state, including the lowest-energy ring-bending and -twisting modes, nu19' (b1) and nu14' (a2), respectively. Their fundamentals in the T1 state are 160.5 and 246 cm-1, compared to 99 and 239 cm-1, respectively, in the S0 ground state. The increases in these ring frequencies upon electronic excitation signify that the nominal n --> pi* chromophore is delocalized to include the conjugated ring atoms. The extent of this delocalization is different in the T1(n,pi*) vs S1(n,pi*) excited states. This conclusion is based on observed differences in T1 vs S1 ring fundamental frequencies.


Assuntos
Ciclopentanos/química , Teoria Quântica , Análise Espectral/métodos , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA