Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 272: 116070, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38340603

RESUMO

Perfluorooctanesulfonic acid (PFOS) is a neurotoxic widespread organic contaminant which affects several brain functions including memory, motor coordination and social activity. PFOS has the ability to traverse the placenta and the blood brain barrier (BBB) and cause weight gain in female mice. It's also known that obesity and consumption of a high fat diet have negative effects on the brain, impairs cognition and increases the risk for the development of dementia. The combination effect of developmental exposure to PFOS and the intake of a high-fat diet (HFD) has not been explored. This study investigates the effect of PFOS and /or HFD on weight gain, behavior and transcriptomic and proteomic analysis of adult brain mice. We found that female mice exposed to PFOS alone showed an increase in weight, while HFD expectedly increased body weight. The combination of HFD and PFOS exacerbated generalized behavior such as time spent in the center and rearing, while PFOS alone impacted the distance travelled. These results suggest that PFOS exposure may promote hyperactivity. The combination of PFOS and HFD alter social behavior such as rearing and withdrawal. Although HFD interfered with memory retrieval, biomarkers of dementia did not change except for total Tau and phosphorylated Tau. Tau was impacted by either or both PFOS exposure and HFD. Consistent with behavioral observations, global cerebral transcriptomic analysis showed that PFOS exposure affects calcium signaling, MAPK pathways, ion transmembrane transport, and developmental processes. The combination of HFD with PFOS enhances the effect of PFOS in the brain and affects pathways related to ER stress, axon guidance and extension, and neural migration. Proteomic analysis showed that HFD enhances the impact of PFOS on inflammatory pathways, regulation of cell migration and proliferation, and MAPK signaling pathways. Overall, these data show that PFOS combined with HFD may reprogram the genome and modulate neuromotor development and may promote symptoms linked to attention deficit-hyperactivity disorders (ADHD) and autism spectrum disorders (ASD). Future work will be needed to confirm these connections.


Assuntos
Ácidos Alcanossulfônicos , Demência , Fluorocarbonos , Transtornos do Neurodesenvolvimento , Gravidez , Camundongos , Animais , Feminino , Dieta Hiperlipídica/efeitos adversos , Proteômica , Aumento de Peso , Camundongos Endogâmicos C57BL
2.
Protein Sci ; 33(2): e4875, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38105512

RESUMO

Nanobodies are single-domain fragments of antibodies with comparable specificity and affinity to antibodies. They are emerging as versatile tools in biology due to their relatively small size. Here, we report the crystal structure of a specific nanobody Nbα-syn01, bound to a 14 amino acid long peptide of α-synuclein (αSyn), a 140-residue protein whose aggregation is associated with Parkinson's disease. The complex structure exhibits a unique binding pattern where the αSyn peptide replaces the N-terminal region of nanobody. Recognition is mediated principally by extended main chain interaction of the αSyn peptide and specificity of the interaction lies in the central 48-52 region of αSyn peptide. Structure-guided truncation of Nbα-syn01 shows tighter binding to αSyn peptide and improved inhibition of α-synuclein aggregation. The structure of the truncated complex was subsequently determined and was indistinguishable to full length complex as the full-length form had no visible electron density for the N-terminal end. These findings reveal the molecular basis for a previously unobserved binding mode for nanobody recognition of α-synuclein, providing an explanation for the enhanced binding, and potential for an alternate framework for structure-based protein engineering of nanobodies to develop better diagnostic and therapeutic tools.


Assuntos
Doença de Parkinson , Anticorpos de Domínio Único , Humanos , alfa-Sinucleína/química , Doença de Parkinson/metabolismo , Peptídeos , Anticorpos
3.
Microbiol Spectr ; 11(1): e0208122, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36651727

RESUMO

Infectious bronchitis virus (IBV) is a coronavirus responsible for major health problems in the poultry industry. New virus strains continue to appear, causing large economic losses. To develop a rapid and accurate new quantitative assay for diagnosis of the virus without DNA extraction, we selected highly specific single-stranded DNA (ssDNA) aptamers with a high affinity to IBV, using the systematic evolution of ligands by exponential enrichment (SELEX) technology for aptamer screening, followed by high-throughput sequencing technology. Two of these aptamers, AptIBV5 and AptIBV2, were used to establish homogenous and solid-phase proximity ligation assays (PLAs). The developed assays were evaluated for their sensitivity and specificity using collected field samples and then compared to the newly developed sandwich enzyme-linked aptamer assay (ELAA) and reverse transcription-quantitative PCR (qRT-PCR), as the gold-standard method. The solid-phase PLA showed a lower limit of detection and a broader dynamic range than the two other assays. The developed technique may serve as an alternative assay for the diagnosis of IBV, with the potential to be extended to the detection of other important animal or human viruses. IMPORTANCE Infectious bronchitis virus (IBV) causes high morbidity and mortality and large economic losses in the poultry industry. The virus has the ability to genetically mutate into new IBV strains, causing devastating disease and outbreaks. To better monitor the emergence of this virus, the development of a rapid and highly sensitive diagnostic method should be implemented. For this, we generated aptamers with high affinity and specificity to the IBV in an ssDNA library. Using two high-affinity aptamers, we developed a sandwich ELAA and a very sensitive aptamer-based proximity ligation assay (PLA). The new assay showed high sensitivity and specificity and was used to detect IBV in farm samples. The PLA was compared to the newly developed sandwich ELAA and qRT-PCR, as the gold-standard technique.


Assuntos
Bronquite , Doenças Transmissíveis , Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Animais , Humanos , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/veterinária , Aves Domésticas , Vírus da Bronquite Infecciosa/genética , Doenças das Aves Domésticas/epidemiologia , Galinhas
4.
Methods Mol Biol ; 2617: 239-248, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36656529

RESUMO

Recombinant antibody fragments such as Fab, scFvs, and diabodies against α-syn have become a viable alternative to the conventional full-length antibodies in immunotherapeutic approaches due to their benefits which include smaller size, higher stability, specificity, and affinity. However, the majority of recombinant antibody fragments typically express as inclusion bodies (IBs) in E. coli, which makes their purification incredibly difficult. Here, we describe a method involving a mild solubilizing protocol followed by slow on-column refolding to purify active single-chain variable fragment (scFv-pF) antibody that can recognize the pathogenic α-syn fibrils.


Assuntos
Anticorpos de Cadeia Única , alfa-Sinucleína , Escherichia coli/genética , Anticorpos de Cadeia Única/genética , Proteínas Recombinantes , Corpos de Inclusão
5.
ACS Chem Neurosci ; 13(23): 3330-3341, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36348612

RESUMO

Neuropathologically, Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are characterized by the accumulation of insoluble aggregates of α-synuclein (α-syn) in the Lewy bodies (LBs). In addition to full-length α-syn fibrils, C-terminally truncated α-syn is also abundant in the LBs that acts as seeds and facilitates the aggregation of the full-length α-syn in vitro and in vivo and induces toxicity. Hence, identifying molecules that can inhibit the seeding activity of these truncated forms is of great importance. Here, we report the first in vitro selection of aptamers targeting the fibrillar forms of different C-terminally truncated α-syn using systematic evolution by an exponential enrichment method followed by quantitative high-throughput DNA sequencing. We identify a panel of aptamers that bound with high specificity to different truncated forms of α-syn fibrils with no cross-reactivity toward other amyloid fibrils. Interestingly, two of the aptamers (named Apt11 and Apt15) show higher affinity to most C-terminally truncated forms of α-syn fibrils with an evident inhibition of α-syn-seeded aggregation in vitro by Apt11. This inhibition is further confirmed by circular dichroism, Congo red binding assay, and electronic microscopy. Moreover, Apt11 is also found to reduce the insoluble phosphorylated form of α-syn at Ser-129 (pS129-α-syn) in the cell model and also can inhibit α-syn aggregation using RT-QuIC reactions seeded with brain homogenates extracted from patients affected by PD. The aptamers discovered in this study represent potential useful tools for research and diagnostics or therapy toward PD and DLB.


Assuntos
Aptâmeros de Nucleotídeos , alfa-Sinucleína , Humanos , alfa-Sinucleína/genética , DNA de Cadeia Simples , Corpos de Lewy , Doença por Corpos de Lewy/genética , Doença de Parkinson/genética , Aptâmeros de Nucleotídeos/genética
6.
FEBS J ; 289(15): 4657-4673, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35090199

RESUMO

Nanobodies (Nbs), the single-domain antigen-binding fragments of dromedary heavy-chain antibodies (HCAb), are excellent candidates as therapeutic and diagnostic tools in synucleinopathies because of their small size, solubility and stability. Here, we constructed an immune nanobody library specific to the monomeric form of alpha-synuclein (α-syn). Phage display screening of the library allowed the identification of a nanobody, Nbα-syn01, specific for α-syn. Unlike previously developed nanobodies, Nbα-syn01 recognized the N-terminal region which is critical for in vitro and in vivo aggregation and contains many point mutations involved in early PD cases. The affinity of the monovalent Nbα-syn01 and the engineered bivalent format BivNbα-syn01 measured by isothermal titration calorimetry revealed unexpected results where Nbα-syn01 and its bivalent format recognized preferentially α-syn fibrils compared to the monomeric form. Nbα-syn01 and BivNbα-syn01 were also able to inhibit α-syn-seeded aggregation in vitro and reduced α-syn-seeded aggregation and toxicity in cells showing their potential to reduce α-syn pathology. Moreover, both nanobody formats were able to recognize Lewy-body pathology in human post-mortem brain tissue from PD and DLB cases. Additionally, we present evidence through structural docking that Nbα-syn01 binds the N-terminal region of the α-syn aggregated form. Overall, these results highlight the potential of Nbα-syn01 and BivNbα-syn01 in developing into a diagnostic or a therapeutic tool for PD and related disorders.


Assuntos
Doença de Parkinson , Anticorpos de Domínio Único , Encéfalo/metabolismo , Humanos , Doença de Parkinson/tratamento farmacológico , Anticorpos de Domínio Único/metabolismo , alfa-Sinucleína/química
7.
FEBS Open Bio ; 11(4): 1122-1131, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33595202

RESUMO

Detecting viral antigens at low concentrations in field samples can be crucial for early veterinary diagnostics. Proximity ligation assays (PLAs) in both solution and solid-phase formats are widely used for high-performance protein detection in medical research. However, the affinity reagents used, which are mainly poly- and monoclonal antibodies, play an important role in the performance of PLAs. Here, we have established the first homogeneous and solid-phase proximity-dependent DNA aptamer ligation assays for rapid and accurate detection of Newcastle disease virus (NDV). NDV is detected by a pair of extended DNA aptamers that, upon binding in proximity to proteins on the envelope of the virus, are joined by enzymatic ligation to form a unique amplicon that can be sensitively detected using real-time PCR. The sensitivity, specificity, and reproducibility of the assays were validated using 40 farm samples. The results demonstrated that the developed homogeneous and solid-phase PLAs, which use NDV-selective DNA aptamers, are more sensitive than the sandwich enzymatic-linked aptamer assay (ELAA), and have a comparable sensitivity to real-time reverse transcription PCR (rRT-PCR) as the gold standard detection method. In addition, the solid-phase PLA was shown to have a greater dynamic range with improved lower limit of detection, upper- and lower limit of quantification, and minimal detectable dose as compared with those of ELAA and rRT-PCR. The specificity of PLA is shown to be concordant with rRT-PCR.


Assuntos
Aptâmeros de Nucleotídeos , Doença de Newcastle/diagnóstico , Doença de Newcastle/virologia , Vírus da Doença de Newcastle , Técnicas de Amplificação de Ácido Nucleico , Reação em Cadeia da Polimerase em Tempo Real , Animais , Vírus da Doença de Newcastle/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
8.
PLoS One ; 15(11): e0241773, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33156828

RESUMO

Aggregation of α-synuclein (α-syn) has been implicated in multiple neurodegenerative disorders including Parkinson's disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA), collectively grouped as synucleinopathies. Recently, recombinant antibody fragments (Fab, scFvs and diabodies) against α-syn have emerged as an alternative to the traditional full-length antibody in immunotherapeutic approaches owing to their advantages including smaller size and higher stability, specificity and affinity. However, most of the recombinant antibody fragments tend to be expressed as inclusion bodies (IBs) making its purification extremely challenging. In the current study, a single-chain variable fragment (scFv-F) antibody, targeting the pathogenic α-syn fibrils, was engineered and expressed in E. coli. Majority of the expressed scFv-F accumulated in insoluble aggregates as IBs. A variety of mild and harsh solubilizing conditions were tested to solubilize IBs containing scFv-F to obtain the active protein. To preserve secondary structure and bioactivity, a mild solubilizing protocol involving 100 mM Tris, pH 12.5 with 2 M urea was chosen to dissolve IBs. Slow on-column refolding method was employed to subsequently remove urea and obtain active scFv-F. A three-dimensional (3D) model was built using homology modeling and subjected to molecular docking with the known α-syn structure. Structural alignment was performed to delineate the potential binding pocket. The scFv-F thus purified demonstrated high specificity towards α-syn fibrils compared to monomers. Molecular modeling studies suggest that scFv-F shares the same structural topology with other known scFvs. We present evidence through structural docking and alignment that scFv-F binds to α-syn C-terminal region. In conclusion, mild solubilization followed by slow on-column refolding can be utilized as a generalized and efficient method for hard to purify disease relevant insoluble proteins and/or antibody molecules from IBs.


Assuntos
Escherichia coli/crescimento & desenvolvimento , Corpos de Inclusão/metabolismo , Anticorpos de Cadeia Única/farmacologia , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Sítios de Ligação , Clonagem Molecular/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Ligação Proteica , Engenharia de Proteínas , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/genética
9.
PLoS One ; 15(8): e0237253, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32790805

RESUMO

Aptamers are short single-stranded DNA (ssDNA), RNA or synthetic XNA molecules, which are used as a class of affinity binders recognizing target molecules with a very high affinity and specificity. The aim of this study was to generate and characterize ssDNA aptamers for the detection of Newcastle disease virus (NDV). These aptamers were selected using systematic evolution of ligands by exponential enrichment (SELEX) in combination with quantitative high-throughput DNA sequencing. After three rounds of selections, a highly enriched ssDNA pool was sequenced, and the results were analyzed using FASTAptamer Toolkit. Sequencing reads were sorted by copy numbers and clustered into groups, according to their sequence homology. Top aptameric sequences were used to develop a sandwich enzymatic linked aptamer assay (ELAA) for rapid and sensitive detection of NDV in farm samples. The selected aptamers have an affinity within the nanomolar range, and a high specificity with no cross-reactivity towards other avian viruses. Following optimization of the sandwich ELAA method, the results demonstrated that both selected aptamers Apt_NDV01 and Apt_NDV03 with dissociation constant values of 31 nM and 78.1 nM, respectively, showed the highest specificity and affinity for NDV detection. The ELAA results were verified by quantitative real-time PCR, demonstrating strong concordance, and showing outstanding accuracy for detection of NDV in field sample. In summary, combination of SELEX with high-throughput DNA sequencing allowed rapid screening and selection of aptamers. The selected aptamers allowed recognition of NDV with high affinities. This is the first report that uses a validated sandwich ELAA for rapid and specific detection of NDV in poultry samples.


Assuntos
Aptâmeros de Nucleotídeos/química , DNA de Cadeia Simples/química , Doença de Newcastle/diagnóstico , Vírus da Doença de Newcastle/isolamento & purificação , Animais , Técnicas Biossensoriais , Sequenciamento de Nucleotídeos em Larga Escala , Doença de Newcastle/virologia , Aves Domésticas/virologia , Técnica de Seleção de Aptâmeros
10.
Sci Rep ; 10(1): 8137, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32424162

RESUMO

Synucleinopathies including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA) are characterized by pathological accumulation of α-synuclein (α-syn). Amongst the various approaches attempting to tackle the pathological features of synucleinopathies, antibody-based immunotherapy holds much promise. However, the large size of antibodies and corresponding difficulty in crossing the blood-brain barrier has limited development in this area. To overcome this issue, we engineered single-chain variable fragments (scFvs) against fibrillar α-syn, a putative disease-relevant form of α-syn. The purified scFvs showed specific activity towards α-syn fibrils and oligomers in comparison to monomers and recognized intracellular inclusions in human post-mortem brain tissue of Lewy body disease cases, but not aged controls. In vitro studies indicated scFvs inhibit the seeding of α-syn aggregation in a time-dependent manner, decreased α-syn seed-induced toxicity in a cell model of PD, and reduced the production of insoluble α-syn phosphorylated at Ser-129 (pS129-α-syn). These results suggest that our α-syn fibril-specific scFvs recognize α-syn pathology and can inhibit the aggregation of α-syn in vitro and prevent seeding-dependent toxicity. Therefore, the scFvs described here have considerable potential to be utilized towards immunotherapy in synucleinopathies and may also have applications in ante-mortem imaging modalities.


Assuntos
Doença por Corpos de Lewy/metabolismo , Doença de Parkinson/metabolismo , Anticorpos de Cadeia Única/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Encéfalo/metabolismo , Humanos , Doença por Corpos de Lewy/genética , Doença de Parkinson/genética , Agregados Proteicos , Ligação Proteica , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/genética , alfa-Sinucleína/genética , alfa-Sinucleína/toxicidade
11.
J Neurochem ; 150(5): 612-625, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31055836

RESUMO

Synucleinopathies including Parkinson's disease, dementia with Lewy bodies and multiple system atrophy are characterized by the abnormal accumulation and propagation of α-synuclein (α-syn) pathology in the central and peripheral nervous system as Lewy bodies or glial cytoplasmic inclusions. Several antibodies against α-syn have been developed since it was first detected as the major component of Lewy bodies and glial cytoplasmic inclusions. Over the years, researchers have generated specific antibodies that alleviate the accumulation of intracellular aggregated α-syn and associated pathology in cellular and preclinical models of synucleinopathies. So far, antibodies have been the first choice as tools for research and diagnosis and currently, a wide variety of antibody fragments have been developed as an alternative to full-length antibodies for increasing its therapeutic usefulness. Recently, conformation specific antibody-based approaches have been found to be promising as therapeutic strategies, both to block α-syn aggregation and ameliorate the resultant cytotoxicity, and as diagnostic tools. In this review, we summarize different α-syn specific antibodies and provide their usefulness in tackling synucleinopathies. This article is part of the Special Issue "Synuclein".


Assuntos
Anticorpos/imunologia , Sinucleinopatias/terapia , alfa-Sinucleína/imunologia , Anticorpos/uso terapêutico , Anticorpos Biespecíficos/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Especificidade de Anticorpos , Biomarcadores , Diagnóstico Tardio , Epitopos/imunologia , Humanos , Fragmentos de Imunoglobulinas/imunologia , Testes Imunológicos/métodos , Doença de Parkinson/diagnóstico , Doença de Parkinson/imunologia , Doença de Parkinson/terapia , Agregação Patológica de Proteínas/imunologia , Agregação Patológica de Proteínas/prevenção & controle , Conformação Proteica , Engenharia de Proteínas , Proteínas Recombinantes/imunologia , Anticorpos de Domínio Único/imunologia , Sinucleinopatias/diagnóstico , Sinucleinopatias/imunologia , alfa-Sinucleína/antagonistas & inibidores , alfa-Sinucleína/química
12.
Virology ; 515: 29-37, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29223788

RESUMO

A one-step multiplex real-time reverse transcription-PCR (rRT-PCR) assay was developed for simultaneous detection and quantification of four avian respiratory viruses: avian influenza virus (AIV), infectious bronchitis virus (IBV), Newcastle disease virus (NDV) and infectious laryngotracheitis virus (ILTV). In comparison with the singleplex rRT-PCR, the specificity, the sensitivity and the reproducibility of the new assay were evaluated and validated using 70 clinical samples. The optimal cutoff point, the corresponding limit of quantification (LoQ) and the limit of detection (LoD) were statistical established based on receiver operating characteristic (ROC) curve analysis. The results showed that the multiplex assay presents higher sensitivity and specificity. Correlation coefficients (R2) and amplification efficiencies (E) of all singleplex and multiplex rRT-PCR reactions are within the acceptable range. The 95% LoDs of multiplex assay were in the range [3-19] copies genomic/ µl, and its corresponding cutoff cycles were in the range [34.16-36.59]. No competitive inhibition for the detection of the four targets and no specific amplification or cross reactivity with other tested viruses was observed. Excellent results were attained in the inter-assay and intra-assay reproducibility evaluation. All identified samples by the multiplex rRT-PCR assay proved to be 100% concordant with the results of the singleplex assays. The results achieved showed that the multiplex assay is very suitable as a routine laboratory test for rapid and specific detection and quantification of co-infections in field samples.


Assuntos
Doenças das Aves/diagnóstico , Herpesvirus Galináceo 1/isolamento & purificação , Vírus da Bronquite Infecciosa/isolamento & purificação , Vírus da Influenza A/isolamento & purificação , Reação em Cadeia da Polimerase Multiplex/veterinária , Vírus da Doença de Newcastle/isolamento & purificação , Infecções Respiratórias/veterinária , Animais , Doenças das Aves/virologia , Aves , Herpesvirus Galináceo 1/genética , Vírus da Bronquite Infecciosa/genética , Vírus da Influenza A/genética , Limite de Detecção , Reação em Cadeia da Polimerase Multiplex/métodos , Vírus da Doença de Newcastle/genética , Reprodutibilidade dos Testes , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/virologia , Sensibilidade e Especificidade
13.
J Med Entomol ; 54(6): 1476-1482, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29029126

RESUMO

Hard ticks (Acari: Ixodidae) are blood-sucking ectoparasites characterized by the extended period of their attachment to their host. To access their bloodmeal, ticks secrete saliva containing a range of molecules that target the host's inflammation, immune system, and hemostatic components. Some of these molecules reportedly possess antiangiogenic and antitumor properties. The present study describes our investigation, the first of its kind, of the antiangiogenic and antitumoral effects of the Hyalomma dromedarii Koch, 1844 (Acari: Ixodidae), salivary gland extract (SGE), which inhibited the adhesion and migration of Human Umbilical Vein Endothelial Cells (HUVECs) in a dose-dependent manner, as well as angiogenesis in the Chick Chorioallantoic Membrane model. Interestingly, H. dromedarii SGE exerted an antiproliferative effect on U87 glioblastoma cells and inhibited their adhesion and migration to fibrinogen. These results open up new possibilities for characterizing and developing new molecules involved in the key steps of tumor progression.


Assuntos
Inibidores da Angiogênese/análise , Antineoplásicos/análise , Ixodidae/química , Inibidores da Angiogênese/farmacologia , Animais , Antineoplásicos/farmacologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Glândulas Salivares/química
14.
J Virol Methods ; 243: 83-91, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28159667

RESUMO

H9N2 Influenza subtype has emerged in Tunisia causing epidemics in poultry and resulting in major economic losses. New mutations in their hemagglutinin and neuraminidase proteins were acquired, suggesting their potential to directly infect humans. Effective surveillance tools should be implemented to help prevent potential spillover of the virus across species. We have developed a highly sensitive real time immuno-polymerase chain reaction (RT-I-PCR) method for detecting H9N2 virus. The assay applies aptamers as ligands to capture and detect the virus. First, a panel of specific ssDNA aptamers was selected via a one step high stringency protocol. Next, the panel of selected aptamers was characterized for their affinities and their specificity to H9N2 virus. The aptamer showing the highest binding affinity to the virus was used as ligand to develop a highly sensitive sandwich Aptamer I-PCR. A 3-log increase in analytical sensitivity was achieved as compared to a routinely used ELISA antigen test, highlighting the potential of this approach to detect very low levels of virus particles. The test was validated using clinical samples and constitutes a rapid and a label-free platform, opening a new venue for the development of aptamer -based viability sensing for a variety of microorganisms of economic importance in Tunisia and surrounding regions.


Assuntos
Aptâmeros de Nucleotídeos , Imunoensaio/métodos , Vírus da Influenza A Subtipo H9N2/isolamento & purificação , Influenza Aviária/diagnóstico , Influenza Humana/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Animais , Humanos , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H9N2/imunologia , Influenza Aviária/virologia , Influenza Humana/virologia , Aves Domésticas , Tunísia
15.
J Clin Microbiol ; 54(11): 2716-2725, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27558184

RESUMO

A novel oligonucleotide suspension microarray (Luminex microsphere system) was developed for the rapid detection of avian respiratory viruses of major clinical importance. This test was optimized and validated with 70 clinical samples. The developed tool was accurate for high-throughput detection and differentiation of the most important avian respiratory viruses: avian influenza virus (AIV), Newcastle disease virus (NDV), infection bronchitis virus (IBV), and infectious laryngotracheitis virus (ILTV) in single- and mixed-virus infections. A multiplex reverse transcriptase PCR (RT-PCR), followed by a monoplex or a multiplex Luminex assays, were realized using a Luminex 200 analyzer instrument. The sensitivity, specificity, and reproducibility of the multiplex DNA suspension microarray system were evaluated. The results showed no significant differences in the median fluorescence intensity (MFI) value in monoplex and multiplex Luminex assays. The sensitivity and specificity proved to be completely concordant with monoplex real-time RT-PCR. We demonstrated that the multiplex DNA suspension microarray system is an accurate, high-throughput, and relatively simple method for the rapid detection of the main respiratory viruses of poultry.


Assuntos
Doenças das Aves/diagnóstico , Análise em Microsséries/métodos , Reação em Cadeia da Polimerase Multiplex/métodos , Infecções Respiratórias/veterinária , Viroses/veterinária , Vírus/classificação , Vírus/isolamento & purificação , Animais , Doenças das Aves/virologia , Aves , Reprodutibilidade dos Testes , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Sensibilidade e Especificidade , Viroses/diagnóstico , Viroses/virologia , Vírus/genética
16.
Toxicol Appl Pharmacol ; 264(2): 222-31, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22968189

RESUMO

Scorpions represent a significant threat to humans and animals in various countries throughout the world. Recently, we introduced Nanobodies (Nbs) to combat more efficiently scorpion envenoming and demonstrated the performance of NbAahIF12 and NbAahII10 to neutralize scorpion toxins of Androctonus australis hector venom. A bispecific Nb construct (NbF12-10) comprising these two Nbs is far more protective than the classic Fab'(2) based therapy and is the most efficient antivenom therapy against scorpion sting in preclinical studies. Now we investigate the biodistribution and pharmacokinetics of (99m)Tc labeled Nbs by in vivo imaging in rodents and compared these data with those of the Fab'(2) product (PAS). The pharmacodynamics of the Nbs was investigated in rats by in vivo echocardiography and it is shown that NbF12-10 prevents effectively the hemodynamic disturbances induced by a lethal dose of venom. Moreover, even a late injection of NbF12-10 restores the heart rate and brings the blood pressure to baseline values. Histology confirms that NbF12-10 prevents lung and heart lesions of treated mice after envenoming. In conjunction, in this preclinical study, we provide proof of concept that NbF12-10 prevents effectively the fatal disturbances induced by Androctonus venom, and that the Nanobody based therapeutic has a potential to substitute the classic Fab'(2) based product as immunotherapeutic in scorpion envenoming. Further clinical study using larger cohorts of animals should be considered to confirm the full protecting potential of our NbF12-10.


Assuntos
Antivenenos/administração & dosagem , Antivenenos/uso terapêutico , Fragmentos Fab das Imunoglobulinas/administração & dosagem , Fragmentos Fab das Imunoglobulinas/uso terapêutico , Nanopartículas/uso terapêutico , Picadas de Escorpião/tratamento farmacológico , Venenos de Escorpião/imunologia , Escorpiões , Animais , Especificidade de Anticorpos , Camelus/imunologia , Cardiopatias/induzido quimicamente , Cardiopatias/patologia , Cardiopatias/prevenção & controle , Hemodinâmica/efeitos dos fármacos , Pulmão/patologia , Masculino , Miocárdio/patologia , Ratos , Picadas de Escorpião/diagnóstico por imagem , Tecnécio , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único
17.
Biotechnol Appl Biochem ; 59(1): 15-21, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22332740

RESUMO

Most large-scale microbial production of recombinant proteins are based on Escherichia coli, yeasts, or filamentous fungi systems. Using eukaryotic hosts, antibody fragments are generally expressed by targeting to the secretory pathway. This enables not only efficient disulfide bond formation but also secretion of soluble and correctly folded product. For this goal, a recombinant vector was constructed to produce a single-domain antibody (NbAahI'22) directed against AahI' scorpion toxin using the methylotrophic yeast Pichia pastoris. The corresponding complementary DNA was cloned under control of the alcohol oxidase promoter in frame with the Saccharomyces α-factor secretion signal and then transferred to P. pastoris cell strain X-33. Using Western blot, we detected the expression of the recombinant NbAahI'22 exclusively in the culture medium. Targeting to the histidine label, the secreted nanobody was easily purified on nickel-nitrilotriacetic acid resin and then tested in enzyme-linked immunosorbent assay. Interestingly, the production level of the NbAahI'22 in its new glycosylated form reached more than sixfold that obtained in E. coli. These findings give more evidence for the utilization of P. pastoris as a heterologous expression system.


Assuntos
Anticorpos/genética , Anticorpos/metabolismo , Pichia/metabolismo , Escorpiões/genética , Animais , Anticorpos/isolamento & purificação , Expressão Gênica , Pichia/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
18.
Protein Eng Des Sel ; 24(9): 727-35, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21798998

RESUMO

During scorpion envenoming, highly toxic small polypeptides of the venom diffuse rapidly within the victim, causing serious medical problems. Nanobodies (Nbs), the recombinant single-domain antigen-binding fragments of camel-specific heavy-chain only antibodies, offer special advantages in therapy over classic antibody fragments due to their robustness and smaller size, matching the size of the scorpion toxins. Recently, a potent AahII scorpion toxin-neutralizing Nb was identified. However, this NbAahII10 contains a single Cys in its first antigen-binding loop, leading to Nb dimerization upon prolonged storage. In this work, we first investigate the efficacy of NbAahII10 variants in which this Cys was substituted by Ala, Ser or Thr. Second, the NbAahII10 Cys/Ser mutant displaying the best functional properties is subsequently humanized. It is demonstrated that the maximally humanized version of NbAahII10 Cys/Ser maintains its high affinity for the antigen without conceding much on expression yield and stability. More importantly, its neutralizing capacity is preserved as all mice survive injections of seven LD(50) and 50% of mice survived nine LD(50) of the scorpion toxin. Thus, this humanized Nb is the best candidate to develop a therapy in human against the most toxic venom compound of one of the most dangerous scorpions.


Assuntos
Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Neutralizantes/imunologia , Cisteína/química , Venenos de Escorpião/imunologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/genética , Anticorpos Monoclonais Humanizados/metabolismo , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/metabolismo , Afinidade de Anticorpos , Camelus , Cromatografia em Gel , Cisteína/genética , Cisteína/metabolismo , Eletroforese em Gel de Poliacrilamida , Técnicas de Silenciamento de Genes , Humanos , Fragmentos de Imunoglobulinas/química , Fragmentos de Imunoglobulinas/genética , Fragmentos de Imunoglobulinas/imunologia , Fragmentos de Imunoglobulinas/metabolismo , Cadeias Pesadas de Imunoglobulinas/química , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias Pesadas de Imunoglobulinas/metabolismo , Dose Letal Mediana , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Testes de Neutralização , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Venenos de Escorpião/metabolismo
19.
Inflamm Allergy Drug Targets ; 10(5): 358-68, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21756244

RESUMO

Significant progress has been made in immunological studies of scorpion toxins and several formats of antibodies directed against scorpion toxins have been reported. Some of these are commonly used in a specific treatment against envenoming; others are primarily used for immuno-biochemical characterizations. The preparation protocol of the antibody or its fragments can be substantially different from one laboratory to another, which complicates a direct comparison of the potency of the antivenom. The use of immune sera, the total immunoglobulin fraction or Fab and Fab'2 fragments as the therapeutic agent is widespread. A number of monoclonal antibodies have also been reported and used for engineering of Fv, ScFv or Fab fragments. Recently, a novel antibody format - known as nanobodies - derived from HCAbs of camelids and selected after phage display shows great potential to provide a more efficient therapy against scorpion envenoming. Subsequent bispecific derivatives have been designed and their pharmacokinetics have been studied. Distinct advantages and disadvantages have been attributed to these equine, murine or camelid antibodies and their derived fragments. Some fragments are easily amenable into next generation therapeutics after proper manufacturing and provide an ensured availability of the product to the medical community. Through examples, we will show how the comparison of the serotherapeutic effectiveness is compromised due to the absence of standardization, on the preparation of immunogens, production processes and / or nature of the products. We will report on recent advances in the field.


Assuntos
Anticorpos Bloqueadores/uso terapêutico , Antivenenos/uso terapêutico , Fragmentos de Imunoglobulinas/imunologia , Imunoterapia , Picadas de Escorpião/terapia , Animais , Anticorpos Bloqueadores/imunologia , Formação de Anticorpos , Camelídeos Americanos/imunologia , Acessibilidade aos Serviços de Saúde , Humanos , Imunoterapia/tendências , Engenharia de Proteínas , Picadas de Escorpião/epidemiologia , Picadas de Escorpião/imunologia , Venenos de Escorpião/imunologia , Escorpiões , Tecnologia Farmacêutica , Tunísia
20.
FASEB J ; 24(9): 3479-89, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20410443

RESUMO

Envenoming following scorpion sting is a common emergency in many parts of the world. Our aim was to ameliorate the current 100-kDa horse plasma antivenom serum (PAS)-derived Fab'(2) to more quickly reach the highly diffusible scorpion toxins (7 kDa). We immunized dromedaries with toxins from Androctonus australis hector (Aah) scorpions and cloned the single-domain antibody fragments or nanobodies (15 kDa) from their B cells. Nanobodies against AahI' toxin (with AahII the most toxic compound of the venom) were retrieved from the libraries, and their AahI'-toxin neutralization was monitored in mice. Remarkably, the NbAahI'F12 fully protected mice against 100 LD(50) of AahI' administered intracerebroventricularly. Moreover, where PAS failed completely to neutralize 2 LD(50) of crude venom injected subcutaneously, the designed bispecific NbF12-10 against AahI'/AahII toxins succeeded in neutralizing 5 LD(50). Finally, in a challenge assay in which mice were subcutaneously injected with a lethal dose of scorpion venom, the subsequent intravenous injection of 85 microg of NbF12-10 protected all mice, even if the whole procedure was repeated 3 times. Furthermore, the NbF12-10 remained fully protective when mice with severe signs of envenoming were treated a few minutes before the untreated mice died.


Assuntos
Fragmentos de Imunoglobulinas/imunologia , Venenos de Escorpião/imunologia , Animais , Camelus , Mapeamento de Epitopos , Fragmentos de Imunoglobulinas/isolamento & purificação , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...