Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 13(620): eabf4969, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34788078

RESUMO

Quantifying response to drug treatment in mouse models of human cancer is important for treatment development and assignment, yet remains a challenging task. To be able to translate the results of the experiments more readily, a preferred measure to quantify this response should take into account more of the available experimental data, including both tumor size over time and the variation among replicates. We propose a theoretically grounded measure, KuLGaP, to compute the difference between the treatment and control arms. We test and compare KuLGaP to four widely used response measures using 329 patient-derived xenograft (PDX) models. Our results show that KuLGaP is more selective than currently existing measures, reduces the risk of false-positive calls, and improves translation of the laboratory results to clinical practice. We also show that outcomes of human treatment better align with the results of the KuLGaP measure than other response measures. KuLGaP has the potential to become a measure of choice for quantifying drug treatment in mouse models as it can be easily used via the kulgap.ca website.


Assuntos
Xenoenxertos , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Nat Commun ; 12(1): 5797, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34608132

RESUMO

Reproducibility is essential to open science, as there is limited relevance for findings that can not be reproduced by independent research groups, regardless of its validity. It is therefore crucial for scientists to describe their experiments in sufficient detail so they can be reproduced, scrutinized, challenged, and built upon. However, the intrinsic complexity and continuous growth of biomedical data makes it increasingly difficult to process, analyze, and share with the community in a FAIR (findable, accessible, interoperable, and reusable) manner. To overcome these issues, we created a cloud-based platform called ORCESTRA ( orcestra.ca ), which provides a flexible framework for the reproducible processing of multimodal biomedical data. It enables processing of clinical, genomic and perturbation profiles of cancer samples through automated processing pipelines that are user-customizable. ORCESTRA creates integrated and fully documented data objects with persistent identifiers (DOI) and manages multiple dataset versions, which can be shared for future studies.

3.
Cell Syst ; 11(4): 393-401.e2, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32937114

RESUMO

Genomic instability affects the reproducibility of experiments that rely on cancer cell lines. However, measuring the genomic integrity of these cells throughout a study is a costly endeavor that is commonly forgone. Here, we validate the identity of cancer cell lines in three pharmacogenomic studies and screen for genetic drift within and between datasets. Using SNP data from these datasets encompassing 1,497 unique cell lines and 63 unique pharmacological compounds, we show that genetic drift is widely prevalent in almost all cell lines with a median of 4.5%-6.1% of the total genome size drifted between any two isogenic cell lines. This study highlights the need for molecular profiling of cell lines to minimize the effects of passaging or misidentification in biomedical studies. We developed the CCLid web application, available at www.cclid.ca, to allow users to screen the genomic profiles of their cell lines against these datasets. A record of this paper's transparent peer review process is included in the Supplemental Information.


Assuntos
Deriva Genética , Farmacogenética/métodos , Testes Farmacogenômicos/métodos , Linhagem Celular Tumoral , Genoma/genética , Genômica/métodos , Humanos , Reprodutibilidade dos Testes
4.
Nucleic Acids Res ; 48(W1): W455-W462, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32421831

RESUMO

In the past few decades, major initiatives have been launched around the world to address chemical safety testing. These efforts aim to innovate and improve the efficacy of existing methods with the long-term goal of developing new risk assessment paradigms. The transcriptomic and toxicological profiling of mammalian cells has resulted in the creation of multiple toxicogenomic datasets and corresponding tools for analysis. To enable easy access and analysis of these valuable toxicogenomic data, we have developed ToxicoDB (toxicodb.ca), a free and open cloud-based platform integrating data from large in vitro toxicogenomic studies, including gene expression profiles of primary human and rat hepatocytes treated with 231 potential toxicants. To efficiently mine these complex toxicogenomic data, ToxicoDB provides users with harmonized chemical annotations, time- and dose-dependent plots of compounds across datasets, as well as the toxicity-related pathway analysis. The data in ToxicoDB have been generated using our open-source R package, ToxicoGx (github.com/bhklab/ToxicoGx). Altogether, ToxicoDB provides a streamlined process for mining highly organized, curated, and accessible toxicogenomic data that can be ultimately applied to preclinical toxicity studies and further our understanding of adverse outcomes.


Assuntos
Bases de Dados Genéticas , Software , Toxicogenética/métodos , Acetaminofen/toxicidade , Animais , Gráficos por Computador , DNA/biossíntese , Mineração de Dados , Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Inibidores da Síntese de Ácido Nucleico/toxicidade , Ratos
5.
Nucleic Acids Res ; 48(W1): W494-W501, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32442307

RESUMO

Drug-combination data portals have recently been introduced to mine huge amounts of pharmacological data with the aim of improving current chemotherapy strategies. However, these portals have only been investigated for isolated datasets, and molecular profiles of cancer cell lines are lacking. Here we developed a cloud-based pharmacogenomics portal called SYNERGxDB (http://SYNERGxDB.ca/) that integrates multiple high-throughput drug-combination studies with molecular and pharmacological profiles of a large panel of cancer cell lines. This portal enables the identification of synergistic drug combinations through harmonization and unified computational analysis. We integrated nine of the largest drug combination datasets from both academic groups and pharmaceutical companies, resulting in 22 507 unique drug combinations (1977 unique compounds) screened against 151 cancer cell lines. This data compendium includes metabolomics, gene expression, copy number and mutation profiles of the cancer cell lines. In addition, SYNERGxDB provides analytical tools to discover effective therapeutic combinations and predictive biomarkers across cancer, including specific types. Combining molecular and pharmacological profiles, we systematically explored the large space of univariate predictors of drug synergism. SYNERGxDB constitutes a comprehensive resource that opens new avenues of research for exploring the mechanism of action for drug synergy with the potential of identifying new treatment strategies for cancer patients.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Testes Farmacogenômicos , Software , Linhagem Celular Tumoral , Sinergismo Farmacológico , Dosagem de Genes , Variação Genética , Humanos , Metabolômica
6.
Nucleic Acids Res ; 46(D1): D994-D1002, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30053271

RESUMO

Recent cancer pharmacogenomic studies profiled large panels of cell lines against hundreds of approved drugs and experimental chemical compounds. The overarching goal of these screens is to measure sensitivity of cell lines to chemical perturbations, correlate these measures to genomic features, and thereby develop novel predictors of drug response. However, leveraging these valuable data is challenging due to the lack of standards for annotating cell lines and chemical compounds, and quantifying drug response. Moreover, it has been recently shown that the complexity and complementarity of the experimental protocols used in the field result in high levels of technical and biological variation in the in vitro pharmacological profiles. There is therefore a need for new tools to facilitate rigorous comparison and integrative analysis of large-scale drug screening datasets. To address this issue, we have developed PharmacoDB (pharmacodb.pmgenomics.ca), a database integrating the largest cancer pharmacogenomic studies published to date. Here, we describe how the curation of cell line and chemical compound identifiers maximizes the overlap between datasets and how users can leverage such data to compare and extract robust drug phenotypes. PharmacoDB provides a unique resource to mine a compendium of curated cancer pharmacogenomic datasets that are otherwise disparate and difficult to integrate.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Ensaios de Seleção de Medicamentos Antitumorais , Testes Farmacogenômicos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Mineração de Dados , Relação Dose-Resposta a Droga , Humanos , Interface Usuário-Computador
7.
Cancer Res ; 77(11): 3057-3069, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28314784

RESUMO

Identification of drug targets and mechanism of action (MoA) for new and uncharacterized anticancer drugs is important for optimization of treatment efficacy. Current MoA prediction largely relies on prior information including side effects, therapeutic indication, and chemoinformatics. Such information is not transferable or applicable for newly identified, previously uncharacterized small molecules. Therefore, a shift in the paradigm of MoA predictions is necessary toward development of unbiased approaches that can elucidate drug relationships and efficiently classify new compounds with basic input data. We propose here a new integrative computational pharmacogenomic approach, referred to as Drug Network Fusion (DNF), to infer scalable drug taxonomies that rely only on basic drug characteristics toward elucidating drug-drug relationships. DNF is the first framework to integrate drug structural information, high-throughput drug perturbation, and drug sensitivity profiles, enabling drug classification of new experimental compounds with minimal prior information. DNF taxonomy succeeded in identifying pertinent and novel drug-drug relationships, making it suitable for investigating experimental drugs with potential new targets or MoA. The scalability of DNF facilitated identification of key drug relationships across different drug categories, providing a flexible tool for potential clinical applications in precision medicine. Our results support DNF as a valuable resource to the cancer research community by providing new hypotheses on compound MoA and potential insights for drug repurposing. Cancer Res; 77(11); 3057-69. ©2017 AACR.


Assuntos
Classificação/métodos , Sistemas de Liberação de Medicamentos/métodos , Neoplasias/tratamento farmacológico , Farmacogenética/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...