Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 58(13): 8332-8338, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31188582

RESUMO

A metal-organic framework (MOF) is one kind of crystalline microporous material and is increasingly used as a host of catalytically active guests. Nanostructured materials supported on MOFs have presented enhanced catalytic activity and stability. Templates or several steps are essential to the synthesis of MOF composites. Simple and effective MOF synthesis methods are still challenging. Nanosized copper oxide particles in MOF composites, described as nanosized CuO@HKUST-1, were prepared by a facile solvent-free reaction. These series of CuO@HKUST-1 composites exhibited excellent photocatalytic activity for production of hydrogen and methylene blue (MB) degradation under visible light. This synthesis method provides an effective way to fabricate MOF-related nanocomposite catalysts.

2.
Sci Rep ; 8(1): 13226, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30185812

RESUMO

Neutron scattering of deuterated plants can provide fundamental insight into the structure of lignocellulosics in plant cell walls and its deconstruction by pretreatment and enzymes. Such plants need to be characterized for any alterations to lignocellulosic structure caused by growth in deuterated media. Here we show that glucose yields from enzymatic hydrolysis at lower enzyme loading were 35% and 30% for untreated deuterated and protiated switchgrass, respectively. Lignin content was 4% higher in deuterated switchgrass but there were no significant lignin structural differences. Transmission electron microscopy showed differences in lignin distribution and packing of fibers in the cell walls that apparently increased surface area of cellulose in deuterated switchgrass, increasing cellulose accessibility and lowering its recalcitrance. These differences in lignification were likely caused by abiotic stress due to growth in deuterated media.


Assuntos
Lignina/metabolismo , Panicum/enzimologia , Deutério/metabolismo , Glucose/metabolismo , Hidrólise , Lignina/ultraestrutura , Panicum/metabolismo , Panicum/ultraestrutura
3.
ChemSusChem ; 11(17): 2953-2959, 2018 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-29969535

RESUMO

Synthesis of multiphase materials from lignin, a biorefinery coproduct, offers limited success owing to the inherent difficulty in controlling dispersion of these renewable hyperbranched macromolecules in the product or its intermediates. Effective use of the chemically reactive functionalities in lignin, however, enables tuning morphologies of the materials. Here, we bind lignin oligomers with a rubbery macromolecule followed by thermal crosslinking to form a carbon precursor with phase contrasted morphology at submicron scale. The solvent-free mixing is conducted in a high-shear melt mixer. With this, the carbon precursor is further modified with potassium hydroxide for a single-step carbonization to yield activated carbon with tunable pore structure. A typical precursor with 90 % lignin yields porous carbon with 2120 m2 g-1 surface area and supercapacitor with 215 F g-1 capacitance. The results show a simple route towards manufacturing carbon-based energy-storage materials, eliminating the need for conventional template synthesis.

4.
Sci Rep ; 8(1): 8355, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29844472

RESUMO

Biorefineries produce impure sugar waste streams that are being underutilized. By converting this waste to a profitable by-product, biorefineries could be safeguarded against low oil prices. We demonstrate controlled production of useful carbon materials from the waste concentrate via hydrothermal synthesis and carbonization. We devise a pathway to producing tunable, porous spherical carbon materials by modeling the gross structure formation and developing an understanding of the pore formation mechanism utilizing simple reaction principles. Compared to a simple hydrothermal synthesis from sugar concentrate, emulsion-based synthesis results in hollow spheres with abundant microporosity. In contrast, conventional hydrothermal synthesis produces solid beads with micro and mesoporosity. All the carbonaceous materials show promise in energy storage application. Using our reaction pathway, perfect hollow activated carbon spheres can be produced from waste sugar in liquid effluence of biomass steam pretreatment units. The renewable carbon product demonstrated a desirable surface area of 872 m2/g and capacitance of up to 109 F/g when made into an electric double layer supercapacitor. The capacitor exhibited nearly ideal capacitive behavior with 90.5% capacitance retention after 5000 cycles.

5.
ACS Appl Mater Interfaces ; 9(16): 14506-14517, 2017 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-28368569

RESUMO

In this work, nanoporous boron nitride sample was synthesized with a Brunauer-Emmett-Teller (BET) surface area of 1360 m2/g and particle size 5-7 µm. The boron nitride was characterized with X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and electron microscopy (TEM and SEM). Thermogravimetric analysis (TGA) under nitrogen and air and subsequent analysis with XPS and XRD suggested that its structure is stable in air up to 800 °C and in nitrogen up to 1050 °C, which is higher than most of the common adsorbents reported so far. Nitrogen and hydrocarbon adsorption at 298 K and pressure up to 1 bar suggested that all hydrocarbon adsorption amounts were higher than that of nitrogen and the adsorbed amount of hydrocarbon increases with an increase in its molecular weight. The kinetics of adsorption data suggested that adsorption becomes slower with the increase in molecular weight of hydrocarbons. The equilibrium data suggested that that boron nitride is selective to paraffins in a paraffin-olefin mixture and hence may act as an "olefin generator". The ideal adsorbed solution theory (IAST)-based selectivity for CH4/N2, C2H6/CH4, and C3H8/C3H6 was very high and probably higher than the majority of adsorbents reported in the literature. IAST-based calculations were also employed to simulate the binary mixture adsorption data for the gas pairs of CH4/N2, C2H6/CH4, C2H6/C2H4, and C3H8/C3H6. Finally, a simple mathematical model was employed to simulate the breakthrough behavior of the above-mentioned four gas pairs in a dynamic column experiment. The overall results suggest that nanoporous boron nitride can be used as a potential adsorbent for light hydrocarbon separation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...