Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(19): 13367-13373, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38660529

RESUMO

This study introduces a miniaturized fiber-optic Fabry-Perot (FP) interferometric biosensor, distinctively engineered for cost-effective, rapid, and quantitative DNA sequence detection. By leveraging the interference patterns generated within a Fabry-Perot microcavity, our sensor precisely monitors DNA hybridization events in real-time. We have verified the sensor's biofunctionalization via fluorescent labeling and have extensively validated its performance through numerous hybridization and regeneration cycles with 1 µM single-stranded DNA (ssDNA) solutions. Demonstrating remarkable repeatability and reusability, the sensor effectively discerns ssDNA sequences exhibiting varying degrees of mismatches. Its ability to accurately distinguish between sequences with 2 and 7 mismatches underscores its potential as a valuable asset for swift DNA analysis. Characterized by its rapid response time-typically yielding results within 6 minutes-and its adeptness at mismatch identification, our biosensor stands as a potent tool for facilitating accelerated DNA diagnostics and research.

2.
Opt Lett ; 48(24): 6440-6443, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38099768

RESUMO

We demonstrate a high-sensitivity acetylene/methane gas sensor based on hollow-core fiber photothermal interferometry (PTI) with a pump-probe-alternating technique. This technique utilizes two distributed-feedback lasers as pump and probe beams alternatively for two gas components to facilitate photothermal phase modulation and detection through time-division multiplexing. With a 2.5-cm-long hollow-core conjoint-tube fiber, noise-equivalent concentrations of 370 ppb and 130 ppb are demonstrated for methane and acetylene, respectively. Noise characteristics of the PTI system are analyzed and experimentally tested. The proposed technique eliminates the need for an additional laser in the traditional PTI setup, enabling the construction of a sensitive yet more cost-effective multi-gas component detection system.

3.
Opt Lett ; 48(12): 3335-3338, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37319095

RESUMO

We studied the effect of varying gas concentration, buffer gas, length, and type of fibers on the performance of optical fiber photothermal phase modulators based on C2H2-filled hollow-core fibers. For the same control power level, the phase modulator with Ar as the buffer gas achieves the largest phase modulation. For a fixed length of hollow-core fiber, there exists an optimal C2H2 concentration that achieves the largest phase modulation. With a 23-cm-long anti-resonant hollow-core fiber filled with 12.5% C2H2 balanced with Ar, phase modulation of π-rad at 100 kHz is achieved with a control power of 200 mW. The modulation bandwidth of the phase modulator is 150 kHz. The modulation bandwidth is extended to ∼1.1 MHz with a photonic bandgap hollow-core fiber of the same length filled with the same gas mixture. The measured rise and fall time of the photonic bandgap hollow-core fiber phase modulator are 0.57 µs and 0.55 µs, respectively.


Assuntos
Tecnologia de Fibra Óptica , Fibras Ópticas , Fótons
4.
Anal Chem ; 95(8): 4204-4211, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36797009

RESUMO

Photothermal interferometry is a highly sensitive spectroscopic technique for trace gas detection. However, the performance of the state-of-the-art laser spectroscopic sensors is still insufficient for some high-precision applications. Here, we demonstrate optical phase-modulation amplification by operating a dual-mode optical fiber interferometer at destructive interference for ultrasensitive carbon dioxide detection. With a 50 cm long dual-mode hollow-core fiber, amplification of photothermal phase modulation by a factor of nearly 20 is achieved, which enables carbon dioxide detection down to 1 parts-per-billion with a dynamic range of over 7 orders of magnitude. This technique could be readily used to improve the sensitivity of phase modulation-based sensors with a compact and simple configuration.

5.
Anal Chem ; 94(39): 13473-13480, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36129189

RESUMO

We report a multicomponent gas sensor based on hollow-core fiber (HCF) photothermal spectroscopy with frequency-division multiplexing (FDM). A single antiresonant HCF (AR-HCF) is used as the gas cell, which supports broadband transmission from near-infrared (NIR) to mid-infrared (MIR), covering the absorption lines of water vapor (H2O) at 1.39 µm, carbon dioxide (CO2) at 2.00 µm, and carbon monoxide (CO) at 4.60 µm. The NIR and MIR pump lasers at the above wavelengths are coupled into the AR-HCF from the opposite ends and modulated at 7.5, 8.0, and 8.5 kHz, respectively, to produce photothermal phase modulations at different frequencies. A common probe Fabry-Perot interferometer at 1.55 µm is adopted to detect the phase modulations, which are demodulated simultaneously using three lock-in amplifiers at the respective second harmonic frequencies. With a 13-cm-long AR-HCF, simultaneous detections of H2O, CO2, and CO are demonstrated with the limits of detection (LODs) of 2.7 ppm, 25 ppb, and 9 ppb for 1 s lock-in time constant, respectively. The LODs go down to 222, 1.5, and 0.6 ppb, respectively, for 1000 s averaging time. The photothermal signals of CO and CO2, which are humidity-level dependent, are well calibrated by use of the measured H2O signal. The multicomponent gas sensor is compact in configuration and shows good stability with signal fluctuation less than 1.7% over 2 h.


Assuntos
Dióxido de Carbono , Monóxido de Carbono , Tecnologia de Fibra Óptica , Análise Espectral/métodos , Vapor
6.
Opt Lett ; 46(11): 2762-2765, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34061107

RESUMO

We demonstrate a high sensitivity all-fiber spectroscopic methane sensor based on photothermal interferometry. With a 2.4-m-long anti-resonant hollow-core fiber, a 1654 nm distributed feedback laser, and a Raman fiber amplifier, a noise-equivalent concentration of ${\sim}{4.3}\;{\rm ppb}$ methane is achieved at the room temperature and pressure of ${\sim}{1}\;{\rm bar}$. The effects of temperature on the photothermal phase modulation as well as the stability of the interferometer are studied. By introducing a temperature-dependent compensation factor and stabilizing the interferometer at quadrature, signal instability of ${\sim}{2.1}\%$ is demonstrated for temperature variation from 296 to 373 K.

7.
Opt Lett ; 46(2): 178-181, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33448982

RESUMO

We demonstrate a novel method to optically tune the pulse advancement and delay based on stimulated Raman gain in hydrogen. With a frequency-chirped pump, the generated signal pulse is selectively amplified at the leading or trailing edge of the pump pulse, depending on whether the frequency difference between the pump and the signal beam is blue or red detuned from the Raman transition, which results in advancement or delay of the signal peak. Different from the method of slow/fast light, where advancement and delay are accompanied with power loss and gain, respectively, for a single resonance, both the advancement and delay are realized in the gain region for the method here. With a piece of 48-mm-long optical nanofiber in hydrogen, the time-shift for a signal peak ranging from 3.7 to -3.7 ns is achieved in a Raman-generated pulse with width of ∼12n s.

8.
Opt Express ; 28(25): 38115-38126, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33379631

RESUMO

We report a compact mid-infrared (MIR) photothermal spectroscopic ethane (C2H6) sensor with a hollow-core negative-curvature-fiber (HC-NCF) gas cell. The HC-NCF supports low-loss transmission of an MIR pump (3.348 µm) and a near-infrared (NIR) probe (1.55 µm). The pump and probe laser beams are launched into the gas cell from the opposite ends of the HC-NCF, allowing independent MIR pump delivery and NIR fiber-optic probe circuitry. The use of Fabry-Perot as the probe interferometer simplifies the sensor design and suppresses the common-mode noise in the lead in/out single-mode fiber. With a 14-cm-long HC-NCF, an ethane sensor system with the limit of detection (LOD) of 13 parts-per-billion (ppb) is achieved with 1 s lock-in time constant. The LOD goes down to 2.6 ppb with 410 s average time, which corresponds to noise equivalent absorption (NEA) of 2.0×10-6 and is a record for the hollow-core fiber MIR gas sensors. The system instability is 2.2% over a period of 8 hours.

9.
Sensors (Basel) ; 20(21)2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114721

RESUMO

We demonstrate a compact all-fiber oxygen sensor using photothermal interferometry with a short length (4.3 cm) of hollow-core negative curvature fibers. The hollow-core fiber has double transmission windows covering both visible and near-infrared wavelength regions. Absorption of a pump laser beam at 760 nm produces photothermal phase modulation and a probe Fabry-Perot interferometer operating at 1550 nm is used to detect the phase modulation. With wavelength modulation and first harmonic detection, a limit of detection down to 54 parts per million (ppm) with a 600-s averaging time is achieved, corresponding to a normalized equivalent absorption of 7.7 × 10-8 cm-1. The oxygen sensor has great potential for in situ detection applications.

10.
Opt Lett ; 45(20): 5660-5663, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33057252

RESUMO

We demonstrate sensitive gas detection with mode-phase-difference photothermal spectroscopy assisted by a long period grating (LPG) inscribed on a dual-mode negative-curvature hollow-core fiber (NC-HCF). The LPG is inscribed using a pulsed CO2 laser, which enables pump propagation in the fundamental LP01 mode to achieve maximum photothermal phase modulation while exciting both the LP01 and LP11 modes at the probe wavelength to form a dual-mode interferometer for detection of the phase difference. With a 1533 nm pump and a 1620 nm probe, a noise equivalent concentration of ∼2.2 ppb acetylene is achieved with an 85-cm-long NC-HCF gas cell and 1 s lock-in time constant.

11.
Opt Express ; 28(6): 8324-8330, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32225459

RESUMO

Optical nanofiber is a widely adopted platform for highly efficient light-matter interaction by virtue of its exposed evanescent field with high light intensity. However, the strongly constrained mode field with the wavelength-scale size makes the light-matter interaction time limited in consideration of the random thermal motion of warm molecules, which results in considerable transit-time dephasing and thus line broadening. Here we report a systematic study of the transit-time effect associated with the optical nanofibers. Both simulation and experiment for nanofibers exposed in acetylene demonstrate the considerable transit-time broadened linewidth in the low-pressure range.

12.
Opt Express ; 28(4): 5423-5435, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32121763

RESUMO

We study photothermal phase modulation in gas-filled hollow-core optical fibers with differential structural dimensions and attempt to develop highly sensitive practical gas sensors with an in-line Fabry-Perot interferometer for detection of the phase modulation. Analytical formulations based on a hollow-capillary model are developed to estimate the amplitude of photothermal phase modulation at low modulation frequencies as well as the -3 dB roll-off frequency, which provide a guide for the selection of hollow-core fibers and the pump modulation frequencies to maximize photothermal phase modulation. Numerical simulation with the capillary model and experiments with two types of hollow-core fibers support the analytical formulations. Further experiments with an Fabry-Perot interferometer made of 5.5-cm-long anti-resonant hollow-core fiber demonstrated ultra-sensitive gas detection with a noise-equivalent-absorption coefficient of 2.3×10-9 cm-1, unprecedented dynamic range of 4.3×106 and <2.5% instability over a period of 24 hours.

13.
Nat Commun ; 11(1): 847, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32051415

RESUMO

Laser spectroscopy outperforms electrochemical and semiconductor gas sensors in selectivity and environmental survivability. However, the performance of the state-of-the-art laser sensors is still insufficient for many high precision applications. Here, we report mode-phase-difference photothermal spectroscopy with a dual-mode anti-resonant hollow-core optical fiber and demonstrate all-fiber gas (acetylene) detection down to ppt (parts-per-trillion) and <1% instability over a period of 3 hours. An anti-resonant hollow-core fiber could be designed to transmit light signals over a broad wavelength range from visible to infrared, covering molecular absorption lines of many important gases. This would enable multi-component gas detection with a single sensing element and pave the way for ultra-precision gas sensing for medical, environmental and industrial applications.

14.
Opt Lett ; 43(7): 1566-1569, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29601031

RESUMO

We present an all-fiber intracavity photothermal (IC-PT) spectroscopic gas sensor with a hollow-core photonic bandgap fiber (HC-PBF) gas cell. The gas cell is placed inside a fiber-ring laser cavity to achieve higher laser light intensity in the hollow core and hence higher PT modulation signal. An experiment with a 0.62-m-long HC-PBF gas cell demonstrated a noise equivalent concentration of 176 ppb acetylene. Theoretical modeling shows that the IC-PT sensor has the potential of achieving sub-ppb (parts-per-billion) acetylene detection sensitivity.

15.
Opt Express ; 25(25): 31568-31585, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-29245830

RESUMO

We report the first distributed optical fibre trace-gas detection system based on photothermal interferometry (PTI) in a hollow-core photonic bandgap fibre (HC-PBF). Absorption of a modulated pump propagating in the gas-filled HC-PBF generates distributed phase modulation along the fibre, which is detected by a dual-pulse heterodyne phase-sensitive optical time-domain reflectometry (OTDR) system. Quasi-distributed sensing experiment with two 28-meter-long HC-PBF sensing sections connected by single-mode transmission fibres demonstrated a limit of detection (LOD) of ∼10 ppb acetylene with a pump power level of 55 mW and an effective noise bandwidth (ENBW) of 0.01 Hz, corresponding to a normalized detection limit of 5.5ppb⋅W/Hz. Distributed sensing experiment over a 200-meter-long sensing cable made of serially connected HC-PBFs demonstrated a LOD of ∼ 5 ppm with 62.5 mW peak pump power and 11.8 Hz ENBW, or a normalized detection limit of 312ppb⋅W/Hz. The spatial resolution of the current distributed detection system is limited to ∼ 30 m, but it is possible to reduce down to 1 meter or smaller by optimizing the phase detection system.

16.
Opt Lett ; 42(22): 4712-4715, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29140350

RESUMO

We report performance optimization of hollow-core photonic bandgap fiber (HC-PBF) photothermal (PT) gas sensors. The PT phase modulation efficiency of a C2H2 filled HC-PBF (HC-1550-02) is found independent of the pump modulation frequency for up to ∼330 kHz, but starts to drop quickly to 10% of the maximum value at a couple of megahertz. With a 1.1 m long HC-PBF gas cell with angle-cleaved single-mode fiber/HC-PBF joints to reduce reflection and a modified 3×3 Sagnac interferometer with balanced detection for phase demodulation, a noise equivalent concentration of ∼67 ppbC2H2 is achieved with a 1 s time constant, and it goes down to ∼18 ppb with 145 s integration time. The system has good long-term stability and exhibits signal fluctuations of <1% over a ∼5 h period.

17.
Sci Rep ; 6: 39410, 2016 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-28009011

RESUMO

Gas detection with hollow-core photonic bandgap fibre (HC-PBF) and pulsed photothermal (PT) interferometry spectroscopy are studied theoretically and experimentally. A theoretical model is developed and used to compute the gas-absorption-induced temperature and phase modulation in a HC-PBF filled with low-concentration of C2H2 in nitrogen. The PT phase modulation dynamics for different pulse duration, peak power and energy of pump beam are numerically modelled, which are supported by the experimental results obtained around the P(9) absorption line of C2H2 at 1530.371 nm. Thermal conduction is identified as the main process responsible for the phase modulation dynamics. For a constant peak pump power level, the phase modulation is found to increase with pulse duration up to ~1.2 µs, while it increases with decreasing pulse duration for a constant pulse energy. It is theoretically possible to achieve ppb level detection of C2H2 with ~1 m length HC-PBF and a pump beam with ~10 ns pulse duration and ~100 nJ pulse energy.


Assuntos
Tecnologia de Fibra Óptica/métodos , Gases/química , Interferometria/métodos , Análise Espectral/métodos , Desenho de Equipamento/métodos , Modelos Teóricos , Nitrogênio/química , Fibras Ópticas , Fótons , Temperatura
18.
Opt Lett ; 41(13): 3025-8, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27367092

RESUMO

A highly sensitive, compact, and low-cost trace gas sensor based on photothermal effect in a hollow-core fiber Fabry-Perot interferometer (FPI) is described. The Fabry-Perot sensor is fabricated by splicing a piece of hollow-core photonic bandgap fiber (HC-PBF) to single-mode fiber pigtails at both ends. The absorption of a pump beam in the hollow core results in phase modulation of probe beam, which is detected by the FPI. Experiments with a 2 cm long HC-PBF with femtosecond laser drilled side-holes demonstrated a response time of less than 19 s and noise equivalent concentration (NEC) of 440 parts-per-billion (ppb) using a 1 s lock-in time constant, and the NEC goes down to 117 ppb (2.7×10-7 in absorbance) by using 77 s averaging time.

19.
Nat Commun ; 6: 6767, 2015 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-25866015

RESUMO

Photothermal interferometry is an ultra-sensitive spectroscopic means for trace chemical detection in gas- and liquid-phase materials. Previous photothermal interferometry systems used free-space optics and have limitations in efficiency of light-matter interaction, size and optical alignment, and integration into photonic circuits. Here we exploit photothermal-induced phase change in a gas-filled hollow-core photonic bandgap fibre, and demonstrate an all-fibre acetylene gas sensor with a noise equivalent concentration of 2 p.p.b. (2.3 × 10(-9) cm(-1) in absorption coefficient) and an unprecedented dynamic range of nearly six orders of magnitude. The realization of photothermal interferometry with low-cost near infrared semiconductor lasers and fibre-based technology allows a class of optical sensors with compact size, ultra sensitivity and selectivity, applicability to harsh environment, and capability for remote and multiplexed multi-point detection and distributed sensing.

20.
Opt Express ; 22(20): 24894-907, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25322061

RESUMO

This paper investigates the effect of modal interference on the performance of hollow-core photonic bandgap fiber (HC-PBF) gas sensors. By optimizing mode launch, using proper length of sensing HC-PBF, and applying proper wavelength modulation in combination with lock-in detection, as well as appropriate digital signal processing, an estimated lower detection limit of less than 1 part-per-million by volume (ppmv) acetylene is achieved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...