Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 34(15): 4465-4472, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29584437

RESUMO

Azobenzene materials provide an effective way for liquid crystal (LC) alignment besides traditional rubbing technology. A strong relationship between relative humidity (RH) and the photoalignment quality of hydrophilic azobenzene dye brilliant yellow (BY) has been investigated. Good photoalignment quality can only be ensured at about 40% RH or below. On the other hand, the photostability of the alignment layer is also influenced dramatically by RH. The rewritability can be guaranteed at extremely low RH (≤10%). It is gradually lost with increasing RH, and the alignment layer becomes photostable against further light exposure when at 40% RH or above. Therefore, the BY photoalignment layer can be tuned from rewritable to photostable by simply adjusting RH, and thus multistep photopatterned alignments can be obtained and reserved based on this method. Similar properties are also expected for other hydrophilic azobenzene photoalignment materials, where the specific RH values may vary correspondingly. The reason is due to the strong intermolecular interaction and J-aggregate formation of BY molecules with water insertion. Moreover, the lyotropic LC formed by J-aggregated BY molecules in aqueous solution is reported here.

2.
Langmuir ; 33(16): 3968-3974, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28379710

RESUMO

Azobenzene photoalignment materials are highly effective for liquid crystal alignment with high sensitivity and rewritability. A strong relationship between relative humidity and the alignment quality of a thin layer of azobenzenesulfonic dye has been investigated, where the photoinduced phase retardation, order parameter, and anchoring strength of the alignment layer are influenced dramatically by relative humidity. Our results provide fabrication guidance for the photoalignment process in both display and photonic applications. In addition, an exotic substantial ordering enhancement is observed by increasing the relative humidity without further light illumination, where the self-assembly of the photoaligned material incorporated with water molecules is the underlying reason for the enhanced high ordering (S > 0.8). Based on X-ray diffraction and depolarized optical microscopy observation, together with the photoalignment quality, a semicrystalline structure of the humidified azobenzenesulfonic material is proposed. The transition from amorphous solid at low relative humidity to semicrystal at high relative humidity provides a new perspective of understanding the hydrophilic photoalignment materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...