Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 3590, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739116

RESUMO

Several investigations into the sites of action of opioid analgesics have utilized peripherally acting mu-opioid receptor antagonists (PAMORAs), which have been incorrectly assumed to possess limited permeability across the blood-brain barrier. Unfortunately, the poor pharmacokinetic properties of current PAMORAs have resulted in misunderstandings of the role of central nervous system and gastrointestinal tract in precipitating side effects such as opioid-induced constipation. Here, we develop a drug delivery approach for restricting the passage of small molecules across the blood-brain barrier. This allows us to develop naloxone- and oxycodone-based conjugates that display superior potency, peripheral selectivity, pharmacokinetics, and efficacy in rats compared to other clinically used PAMORAs. These probes allow us to demonstrate that the mu-opioid receptors in the central nervous system have a fundamental role in precipitating opioid-induced constipation. Therefore, our conjugates have immediate use as pharmacological probes and potential therapeutic agents for treating constipation and other opioid-related side effects.


Assuntos
Analgésicos Opioides , Sistemas de Liberação de Medicamentos , Antagonistas de Entorpecentes , Constipação Induzida por Opioides , Analgésicos Opioides/efeitos adversos , Animais , Antagonistas de Entorpecentes/uso terapêutico , Constipação Induzida por Opioides/tratamento farmacológico , Pré-Albumina , Ratos , Receptores Opioides mu
2.
Biopolymers ; 111(7): e23358, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32533591

RESUMO

Peptoids belong to a class of sequence-controlled polymers comprising of N-alkylglycine. This study focuses on using tandem mass spectrometry techniques to characterize the fragmentation patterns of a set of singly and doubly protonated peptoids consisting of one basic residue placed at different positions. The singly protonated peptoids fragment by producing predominately high-abundant C-terminal ions called Y-ions and low-abundant N-terminal ions called B-ions. Computational studies suggest that the proton affinity (PA) of the C-terminal fragments is generally higher than that of the N-terminal fragments, and the PA of the former increases as the fragments are elongated. The B-ions are likely formed upon dissociating the proton-activated amide bonds via an oxazolone structure, and the Y-ions are produced subsequently by abstracting a proton from the newly formed B-ions, which is energetically favored. The doubly protonated peptoids prefer to fragment closest to either the N- or the C-terminus and produce corresponding B/Y-ion pairs. The basic residue seems to dictate the preferred fragmentation site, which may be the result of minimizing the repulsion between the two charges. Water and terminal neutral losses are a facile process accompanying the peptoid fragmentation in both charge states. The patterns appear to be highly influenced by the location of the basic residue.


Assuntos
Peptoides/química , Espectrometria de Massas em Tandem/métodos , Glicinas N-Substituídas/química , Peptoides/síntese química , Prótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA