Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 3384, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37291130

RESUMO

Femtosecond pump-probe spectroscopy using ultrafast optical and infrared pulses has become an essential tool to discover and understand complex electronic and structural dynamics in solvated molecular, biological, and material systems. Here we report the experimental realization of an ultrafast two-color X-ray pump X-ray probe transient absorption experiment performed in solution. A 10 fs X-ray pump pulse creates a localized excitation by removing a 1s electron from an Fe atom in solvated ferro- and ferricyanide complexes. Following the ensuing Auger-Meitner cascade, the second X-ray pulse probes the Fe 1s → 3p transitions in resultant novel core-excited electronic states. Careful comparison of the experimental spectra with theory, extracts +2 eV shifts in transition energies per valence hole, providing insight into correlated interactions of valence 3d with 3p and deeper-lying electrons. Such information is essential for accurate modeling and predictive synthesis of transition metal complexes relevant for applications ranging from catalysis to information storage technology. This study demonstrates the experimental realization of the scientific opportunities possible with the continued development of multicolor multi-pulse X-ray spectroscopy to study electronic correlations in complex condensed phase systems.


Assuntos
Complexos de Coordenação , Espectroscopia por Absorção de Raios X , Raios X
2.
J Chem Phys ; 158(13): 134304, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37031139

RESUMO

Characterization of the inner-shell decay processes in molecules containing heavy elements is key to understanding x-ray damage of molecules and materials and for medical applications with Auger-electron-emitting radionuclides. The 1s hole states of heavy atoms can be produced by absorption of tunable x rays and the resulting vacancy decays characterized by recording emitted photons, electrons, and ions. The 1s hole states in heavy elements have large x-ray fluorescence yields that transfer the hole to intermediate electron shells that then decay by sequential Auger-electron transitions that increase the ion's charge state until the final state is reached. In molecules, the charge is spread across the atomic sites, resulting in dissociation to energetic atomic ions. We have used x-ray/ion coincidence spectroscopy to measure charge states and energies of Iq+ and Brq'+ atomic ions following 1s ionization at the I and Br K-edges of IBr. We present the charge states and kinetic energies of the two correlated fragment ions associated with core-excited states produced during the various steps of the cascades. To understand the dynamics leading to the ion data, we develop a computational model that combines Monte-Carlo/Molecular-Dynamics (MC/MD) simulations with a classical over-the-barrier model to track inner-shell cascades and redistribution of electrons in valence orbitals and nuclear motion of fragments.

3.
Struct Dyn ; 8(4): 044101, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34368392

RESUMO

We theoretically investigate the fluorescence intensity correlation (FIC) of Ar clusters and Mo-doped iron oxide nanoparticles subjected to intense, femtosecond, and sub-femtosecond x-ray free-electron laser pulses for high-resolution and elemental contrast imaging. We present the FIC of K α and K α h emission in Ar clusters and discuss the impact of sample damage on retrieving high-resolution structural information and compare the obtained structural information with those from the coherent diffractive imaging (CDI) approach. We found that, while sub-femtosecond pulses will substantially benefit the CDI approach, few-femtosecond pulses may be sufficient for achieving high-resolution information with the FIC. Furthermore, we show that the fluorescence intensity correlation computed from the fluorescence of the Mo atoms in Mo-doped iron oxide nanoparticles can be used to image dopant distributions in the nonresonant regime.

4.
J Chem Phys ; 154(21): 214107, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34240961

RESUMO

Femtosecond x-ray pump-x-ray probe experiments are currently possible at free electron lasers such as the linac coherent light source, which opens new opportunities for studying solvated transition metal complexes. In order to make the most effective use of these kinds of experiments, it is necessary to determine which chemical properties an x-ray probe pulse will measure. We have combined electron cascade calculations and excited-state time-dependent density functional theory calculations to predict the initial state prepared by an x-ray pump and the subsequent x-ray probe spectra at the Fe K-edge in the solvated model transition metal complex, K4FeII(CN)6. We find several key spectral features that report on the ligand-field splitting and the 3p and 3d electron interactions. We then show how these features could be measured in an experiment.

5.
J Chem Phys ; 154(22): 224111, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34241215

RESUMO

High-intensity attosecond x rays can produce coherent superpositions of valence-excited states through two-photon Raman transitions. The broad-bandwidth, high-field nature of the pulses results in a multitude of accessible excited states. Multiconfigurational quantum chemistry with the time-dependent Schrödinger equation is used to examine population transfer dynamics in stimulated x-ray Raman scattering of the nitric oxide oxygen and nitrogen K-edges. Two pulse schemes initiate wavepackets of different characters and demonstrate how chemical differences between core-excitation pathways affect the dynamics. The population transfer to valence-excited states is found to be sensitive to the electronic structure and pulse conditions, highlighting complexities attributed to the Rabi frequency. The orthogonally polarized two-color-pulse setup has increased selectivity while facilitating longer, less intense pulses than the one-pulse setup. Population transfer in the 1s → Rydberg region is more effective but less selective at the nitrogen K-edge; the selectivity is reduced by double core-excited states. Result interpretation is aided by resonant inelastic x-ray scattering maps.

6.
Faraday Discuss ; 228(0): 139-160, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-33576361

RESUMO

We examine X-ray scattering from an isolated organic molecule from the linear to nonlinear absorptive regime. In the nonlinear regime, we explore the importance of both the coherent and incoherent channels and observe the onset of nonlinear behavior as a function of pulse duration and energy. In the linear regime, we test the sensitivity of the scattering signal to molecular bonding and electronic correlation via calculations using the independent atom model (IAM), Hartree-Fock (HF) and density functional theory (DFT). Finally, we describe how coherent X-ray scattering can be used to directly visualize femtosecond charge transfer and dissociation within a single molecule undergoing X-ray multiphoton absorption.

7.
Nat Commun ; 11(1): 167, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31919346

RESUMO

Intense x-ray free-electron laser (XFEL) pulses hold great promise for imaging function in nanoscale and biological systems with atomic resolution. So far, however, the spatial resolution obtained from single shot experiments lags averaging static experiments. Here we report on a combined computational and experimental study about ultrafast diffractive imaging of sucrose clusters which are benchmark organic samples. Our theoretical model matches the experimental data from the water window to the keV x-ray regime. The large-scale dynamic scattering calculations reveal that transient phenomena driven by non-linear x-ray interaction are decisive for ultrafast imaging applications. Our study illuminates the complex interplay of the imaging process with the rapidly changing transient electronic structures in XFEL experiments and shows how computational models allow optimization of the parameters for ultrafast imaging experiments.

8.
Proc Natl Acad Sci U S A ; 116(10): 4018-4024, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30765527

RESUMO

Optical trapping has been implemented in many areas of physics and biology as a noncontact sample manipulation technique to study the structure and dynamics of nano- and mesoscale objects. It provides a unique approach for manipulating microscopic objects without inducing undesired changes in structure. Combining optical trapping with hard X-ray microscopy techniques, such as coherent diffraction imaging and crystallography, provides a nonperturbing environment where electronic and structural dynamics of an individual particle in solution can be followed in situ. It was previously shown that optical trapping allows the manipulation of micrometer-sized objects for X-ray fluorescence imaging. However, questions remain over the ability of optical trapping to position objects for X-ray diffraction measurements, which have stringent requirements for angular stability. Our work demonstrates that dynamic holographic optical tweezers are capable of manipulating single micrometer-scale anisotropic particles in a microfluidic environment with the precision and stability required for X-ray Bragg diffraction experiments-thus functioning as an "optical goniometer." The methodology can be extended to a variety of X-ray experiments and the Bragg coherent diffractive imaging of individual particles in solution, as demonstrated here, will be markedly enhanced with the advent of brighter, coherent X-ray sources.


Assuntos
Técnicas Analíticas Microfluídicas , Pinças Ópticas , Tamanho da Partícula , Difração de Raios X
9.
Phys Rev Lett ; 113(25): 253001, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25554879

RESUMO

We present an extended Monte Carlo rate equation approach to examine the inner-shell ionization dynamics of atoms in an intense x-ray free-electron laser (XFEL) pulse. In addition to photoionization, Auger decay, and fluorescence processes, we include bound-to-bound transitions in the rate equation calculations. Using an efficient computational scheme, we account for "hidden resonances" unveiled during the course of an XFEL pulse. For Ar, the number of possible electron configurations is increased ten-billion-fold over that required under nonresonant conditions. We investigated the complex ionization dynamics of Ar atoms exposed to an 480-eV XFEL pulse, where production of ions above charge state 10+ is not allowed via direct one-photon ionization. We found that resonance-enhanced x-ray multiple ionization pathways play a dominant role in producing these nominally inaccessible charge states. Our calculated results agree with the measured Ar ion yield and pulse-duration dependence. We also predict the surprising ion yields reported earlier for Kr and Xe. The Monte Carlo rate equation method enables theoretical exploration of the complex dynamics of resonant high-intensity x-ray processes.

10.
Phys Rev Lett ; 106(5): 053003, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21405393

RESUMO

The creation of superpositions of hole states via single-photon ionization using attosecond extreme-ultraviolet pulses is studied with the time-dependent configuration-interaction singles (TDCIS) method. Specifically, the degree of coherence between hole states in atomic xenon is investigated. We find that interchannel coupling not only affects the hole populations, but it also enhances the entanglement between the photoelectron and the remaining ion, thereby reducing the coherence within the ion. As a consequence, even if the spectral bandwidth of the ionizing pulse exceeds the energy splittings among the hole states involved, perfectly coherent hole wave packets cannot be formed. For sufficiently large spectral bandwidth, the coherence can only be increased by increasing the mean photon energy.

11.
J Chem Phys ; 130(15): 154310, 2009 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-19388749

RESUMO

A short, intense laser pulse may be employed to create a spatially aligned molecular sample that persists after the laser pulse is over. We theoretically investigate whether this impulsive molecular alignment technique may be exploited for experiments using x-ray pulses from a third-generation synchrotron radiation facility. Using a linear rigid rotor model, the alignment dynamics of model molecular systems with systematically increasing size is calculated utilizing both a quantum density matrix formalism and a classical ensemble method. For each system, the alignment dynamics obtained for a 95 ps laser is compared with that obtained for a 10 ps laser pulse. The average degree of alignment after the laser pulse, as calculated quantum mechanically, increases with the size of the molecule. This effect is quantitatively reproduced by the classical calculations. The average degree of impulsive alignment is high enough to induce a pronounced linear dichroism in resonant x-ray absorption using the intense 100 ps x-ray pulses currently available. However, for structural studies based on elastic x-ray scattering, bright x-ray pulses with a duration of 1 ps or shorter will be required in order to make full use of impulsive molecular alignment.

12.
Opt Express ; 15(4): 1845-50, 2007 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-19532423

RESUMO

We present the double- and triple-ionization momentum distributions obtained from a 3-e planar classical calculation in a laser pulse with peak intensity of 0.8 PW/cm(2). The calculated distributions agree surprisingly well with the experimental Ar(2+) and Ar(3+) distributions at the same laser intensity. We demonstrate four recollision pathways that contribute significantly to the production of the doubly and triply charged ions. In particular, the intense-field double ionization pathways are discussed beyond the two-active-electron picture.

13.
Phys Rev Lett ; 97(8): 083001, 2006 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-17026298

RESUMO

We describe first-principles in-plane calculations of nonsequential triple ionization of atoms in a linearly polarized intense laser pulse. In a fully classically correlated description, all three electrons respond dynamically to the nuclear attraction, the pairwise e-e repulsions, and the laser force throughout the duration of a 780 nm laser pulse. Nonsequential ejection is shown to occur in a multielectron, possibly multicycle and multidimensional, rescattering sequence that is coordinated by a number of sharp transverse recollimation impacts.

14.
Phys Rev Lett ; 95(19): 193002, 2005 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-16383976

RESUMO

We use classical electron ensembles and the aligned-electron approximation to examine the effect of laser pulse duration on the dynamics of strong-field double ionization. We cover the range of intensities 10(14)-10(16) W/cm2 for the laser wavelength 780 nm. The classical scenario suggests that the highest rate of recollision occurs early in the pulse and promotes double-ionization production in few-cycle pulses. In addition, the purely classical ensemble calculation predicts an exponentially decreasing recollision rate with each subsequent half cycle. We confirm the exponential behavior by trajectory back analysis.

15.
Phys Rev Lett ; 94(9): 093002, 2005 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-15783962

RESUMO

We introduce a unified and simplified theory of atomic double ionization. Our results show that at high laser intensities (I>/=10(14) W/cm(2)) purely classical correlation is strong enough to account for all of the main features observed in experiments to date.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...