Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 269(Pt 1): 132122, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718992

RESUMO

In the treatment of bowel diseases such as ulcerative colitis through oral administration, an effective drug delivery system targeting the colon is crucial for enhancing efficacy and minimizing side effects of therapeutic agents. This study focuses on the development of a novel nanocomposite hydrogel bead comprising a synergistic blend of biological macromolecules, namely sodium alginate (ALG) and hyaluronic acid (HA), reinforced with layered double hydroxide nanoparticles (LDHs) for the oral delivery of dual therapeutics. The synthesized hydrogel bead exhibits significantly enhanced gel strength and controllable release of methylprednisolone (MP) and curcumin (CUR), serving as an anti-inflammatory drug and a mucosal healing agent, compared to native ALG or ALG/HA hydrogel beads without LDHs. The physicochemical properties of the synthesized LDHs and hydrogel beads were characterized using various techniques, including scanning electron microscopy, zeta potential measurement, transmission electron microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy. In vitro release studies of MP and CUR under simulated gastrointestinal tract (GIT) conditions demonstrate the superior controlled release property of the nanocomposite hydrogel bead, particularly in minimizing premature drug release in the upper GIT environment while sustaining release of over 82 % of drugs in the colonic environment. Thus, the modularly engineered carrier designed for oral colon targeting holds promise as a potential candidate for the treatment of ulcerative colitis.


Assuntos
Alginatos , Liberação Controlada de Fármacos , Ácido Hialurônico , Hidrogéis , Nanopartículas , Alginatos/química , Ácido Hialurônico/química , Hidrogéis/química , Nanopartículas/química , Administração Oral , Portadores de Fármacos/química , Humanos , Hidróxidos/química , Curcumina/química , Curcumina/administração & dosagem , Curcumina/farmacologia , Metilprednisolona/química , Metilprednisolona/administração & dosagem , Sistemas de Liberação de Medicamentos , Colite Ulcerativa/tratamento farmacológico
2.
Int J Biol Macromol ; 222(Pt A): 262-271, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36150568

RESUMO

Here, core-shell hydrogel beads for oral insulin delivery at intestine was reported, which was a target site for insulin absorption. The core-shell hydrogel beads were prepared using naturally derived alginate and chitosan polysaccharides by simple dropping technique. In order to effectively control leakage of insulin from core-shell hydrogel beads, insulin was embedded into the layered double hydroxides (LDHs). LDH/insulin-loaded complexes were firstly coated with chitosan, and then coated with alginate to generate core-shell hydrogel beads. The biocompatibility and angiogenic response of core-shell hydrogel beads were evaluated by direct contact of the beads with chick embryo chorioallantoic membrane, which indicates safety of the core-shell beads. The beads successfully retained the insulin within the core-shell structure at pH 1.2, indicating that insulin had a good protective effect in harsh acidic environments. Interestingly, insulin release starts at the simulated intestinal fluid (pH 6.8) and continue to release for 24 h in a sustained manner.


Assuntos
Alginatos , Quitosana , Embrião de Galinha , Animais , Alginatos/química , Quitosana/química , Insulina/química , Hidrogéis , Ácidos Hexurônicos/química , Ácido Glucurônico/química , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...