Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38562884

RESUMO

There is optimism that cancer drug resistance can be addressed through appropriate combination therapy, but success requires understanding the growing complexity of resistance mechanisms, including the evolution and population dynamics of drug-sensitive and drug-resistant clones over time. Using DNA barcoding to trace individual prostate tumor cells in vivo , we find that the evolutionary path to acquired resistance to androgen receptor signaling inhibition (ARSI) is dependent on the timing of treatment. In established tumors, resistance occurs through polyclonal adaptation of drug-sensitive clones, despite the presence of rare subclones with known, pre-existing ARSI resistance. Conversely, in an experimental setting designed to mimic minimal residual disease, resistance occurs through outgrowth of pre-existing resistant clones and not by adaptation. Despite these different evolutionary paths, the underlying mechanisms responsible for resistance are shared across the two evolutionary paths. Furthermore, mixing experiments reveal that the evolutionary path to adaptive resistance requires cooperativity between subclones. Thus, despite the presence of pre-existing ARSI-resistant subclones, acquired resistance in established tumors occurs primarily through cooperative, polyclonal adaptation of drug-sensitive cells. This tumor ecosystem model of resistance has new implications for developing effective combination therapy.

2.
Sci Total Environ ; 930: 172732, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38663609

RESUMO

East Asian continental outflows with PM2.5, O3, and other species may determine the baseline conditions and affect the air quality in downwind areas via long-range transport (LRT). To gain insight into the impact and spatiotemporal characteristics of airborne pollutants in East Asian continental outflows, a versatile multicopter drone sounding platform was used to simultaneously observe PM2.5, O3, CO2, and meteorological variables (temperature, specific humidity, pressure, and wind vector) above the northern tip of Taiwan, Cape Fuiguei, which often encounters continental outflows during winter monsoon periods. By coordinating hourly high-spatial-resolution profiles provided by drone soundings, WRF/CMAQ model air quality predictions, HYSPLIT-simulated backward trajectories, and MERRA-2 reanalysis data, we analyzed two prominent phenomena of airborne pollutants in continental outflows to better understand their physical/chemical characteristics. First, we found that pollutants were well mixed within a sounding height of 500 m when continental outflows passed through and completely enveloped Cape Fuiguei. Eddies induced by significant fluctuations in wind speeds coupled with minimal temperature inversion and LRT facilitated vertical mixing, possibly resulting in high homogeneity of pollutants within the outflow layer. Second, the drone soundings indicated exceptionally high O3 concentrations (70-100 ppbv) but relatively low concentrations of PM2.5 (10-20 µg/m3), CO2 (420-425 ppmv), and VOCs in some air masses. The low levels of PM2.5, CO2, and VOCs ruled out photochemistry as the cause of the formation of high-level O3. Further coordination of spatiotemporal data with air mass trajectories and O3 cross sections provided by MERRA-2 suggested that the high O3 concentrations could be attributed to stratospheric intrusion and advection via continental outflows. High-level O3 concentrations persisted in the lower troposphere, even reaching the surface, suggesting that stratospheric intrusion O3 may be involved in the rising trend in O3 concentrations in parts of East Asia in recent years in addition to surface photochemical factors.

3.
bioRxiv ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38562717

RESUMO

Driver gene mutations can increase the metastatic potential of the primary tumor1-3, but their role in sustaining tumor growth at metastatic sites is poorly understood. A paradigm of such mutations is inactivation of SMAD4 - a transcriptional effector of TGFß signaling - which is a hallmark of multiple gastrointestinal malignancies4,5. SMAD4 inactivation mediates TGFß's remarkable anti- to pro-tumorigenic switch during cancer progression and can thus influence both tumor initiation and metastasis6-14. To determine whether metastatic tumors remain dependent on SMAD4 inactivation, we developed a mouse model of pancreatic ductal adenocarcinoma (PDAC) that enables Smad4 depletion in the pre-malignant pancreas and subsequent Smad4 reactivation in established metastases. As expected, Smad4 inactivation facilitated the formation of primary tumors that eventually colonized the liver and lungs. By contrast, Smad4 reactivation in metastatic disease had strikingly opposite effects depending on the tumor's organ of residence: suppression of liver metastases and promotion of lung metastases. Integrative multiomic analysis revealed organ-specific differences in the tumor cells' epigenomic state, whereby the liver and lungs harbored chromatin programs respectively dominated by the KLF and RUNX developmental transcription factors, with Klf4 depletion being sufficient to reverse Smad4's tumor-suppressive activity in liver metastases. Our results show how epigenetic states favored by the organ of residence can influence the function of driver genes in metastatic tumors. This organ-specific gene-chromatin interplay invites consideration of anatomical site in the interpretation of tumor genetics, with implications for the therapeutic targeting of metastatic disease.

5.
Nat Cancer ; 5(2): 315-329, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177458

RESUMO

Metastatic gastric carcinoma is a highly lethal cancer that responds poorly to conventional and molecularly targeted therapies. Despite its clinical relevance, the mechanisms underlying the behavior and therapeutic response of this disease are poorly understood owing, in part, to a paucity of tractable models. Here we developed methods to somatically introduce different oncogenic lesions directly into the murine gastric epithelium. Genotypic configurations observed in patients produced metastatic gastric cancers that recapitulated the histological, molecular and clinical features of all nonviral molecular subtypes of the human disease. Applying this platform to both wild-type and immunodeficient mice revealed previously unappreciated links between the genotype, organotropism and immune surveillance of metastatic cells, which produced distinct patterns of metastasis that were mirrored in patients. Our results establish a highly portable platform for generating autochthonous cancer models with flexible genotypes and host backgrounds, which can unravel mechanisms of gastric tumorigenesis or test new therapeutic concepts.


Assuntos
Neoplasias Gástricas , Humanos , Camundongos , Animais , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Modelos Animais de Doenças , Mucosa Gástrica/patologia , Genótipo
6.
Nat Aging ; 4(3): 336-349, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38267706

RESUMO

Senescent cells, which accumulate in organisms over time, contribute to age-related tissue decline. Genetic ablation of senescent cells can ameliorate various age-related pathologies, including metabolic dysfunction and decreased physical fitness. While small-molecule drugs that eliminate senescent cells ('senolytics') partially replicate these phenotypes, they require continuous administration. We have developed a senolytic therapy based on chimeric antigen receptor (CAR) T cells targeting the senescence-associated protein urokinase plasminogen activator receptor (uPAR), and we previously showed these can safely eliminate senescent cells in young animals. We now show that uPAR-positive senescent cells accumulate during aging and that they can be safely targeted with senolytic CAR T cells. Treatment with anti-uPAR CAR T cells improves exercise capacity in physiological aging, and it ameliorates metabolic dysfunction (for example, improving glucose tolerance) in aged mice and in mice on a high-fat diet. Importantly, a single administration of these senolytic CAR T cells is sufficient to achieve long-term therapeutic and preventive effects.


Assuntos
Envelhecimento , Senescência Celular , Camundongos , Animais , Adipócitos , Transdução de Sinais , Linfócitos T
7.
Res Sq ; 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37841853

RESUMO

Senescent cells accumulate in organisms over time because of tissue damage and impaired immune surveillance and contribute to age-related tissue decline1,2. In agreement, genetic ablation studies reveal that elimination of senescent cells from aged tissues can ameliorate various age-related pathologies, including metabolic dysfunction and decreased physical fitness3-7. While small-molecule drugs capable of eliminating senescent cells (known as 'senolytics') partially replicate these phenotypes, many have undefined mechanisms of action and all require continuous administration to be effective. As an alternative approach, we have developed a cell-based senolytic therapy based on chimeric antigen receptor (CAR) T cells targeting uPAR, a cell-surface protein upregulated on senescent cells, and previously showed these can safely and efficiently eliminate senescent cells in young animals and reverse liver fibrosis8. We now show that uPAR-positive senescent cells accumulate during physiological aging and that they can be safely targeted with senolytic CAR T cells. Treatment with anti uPAR CAR T cells ameliorates metabolic dysfunction by improving glucose tolerance and exercise capacity in physiological aging as well as in a model of metabolic syndrome. Importantly, a single administration of a low dose of these senolytic CAR T cells is sufficient to achieve long-term therapeutic and preventive effects.

8.
Sci Total Environ ; 893: 164709, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37301392

RESUMO

The immense impacts of coal-fired power plant plumes on the atmospheric environment have caused great concern linked to climate and health issues. However, studies on the field observations of aerial plumes are relatively limited, mainly due to the lack of suitable plume observation tools and techniques. In this study, we use a multicopter unmanned aerial vehicle (UAV) sounding technique to study the influences of the aerial plumes of the world's fourth-largest coal-fired power plant on the atmospheric physical/chemical conditions and air quality. A set of species, including 106 volatile organic compounds (VOCs), CO, CO2, CH4, PM2.5, and O3, and meteorological variables of temperature (T), specific humidity (SH), and wind data, are collected by the UAV sounding technique. The results reveal that the large-scale plumes of the coal-fired power plant cause local temperature inversion and humidity changes, and even affect the dispersion of pollutants below. The chemical compositions of coal-fired power plant plumes are significantly different from those of another ubiquitous vehicular source. High fractions of ethane, ethene, and benzene and low fractions of n-butane and isopentane found in plumes could serve as the key features to help distinguish the influences of coal-fired power plant plumes from other pollution sources in a particular area. By taking the ratios of pollutants (e.g., PM2.5, CO, CH4, and VOCs) to CO2 in plumes and the CO2 emission amounts of the power plant into calculation, we enable the easy quantification of the specific pollutant emissions released from power plant plumes to the atmosphere. In summary, observation by using drone soundings dissecting the aerial plumes provides a new methodology that allows aerial plumes to be readily detected and characterized. Furthermore, the influences of the plumes on the atmospheric physical/chemical conditions and air quality can be assessed rather straightforwardly, which was not easily achievable in the past.

9.
Elife ; 122023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37261974

RESUMO

Mutations in genes encoding components of chromatin modifying and remodeling complexes are among the most frequently observed somatic events in human cancers. For example, missense and nonsense mutations targeting the mixed lineage leukemia family member 3 (MLL3, encoded by KMT2C) histone methyltransferase occur in a range of solid tumors, and heterozygous deletions encompassing KMT2C occur in a subset of aggressive leukemias. Although MLL3 loss can promote tumorigenesis in mice, the molecular targets and biological processes by which MLL3 suppresses tumorigenesis remain poorly characterized. Here, we combined genetic, epigenomic, and animal modeling approaches to demonstrate that one of the mechanisms by which MLL3 links chromatin remodeling to tumor suppression is by co-activating the Cdkn2a tumor suppressor locus. Disruption of Kmt2c cooperates with Myc overexpression in the development of murine hepatocellular carcinoma (HCC), in which MLL3 binding to the Cdkn2a locus is blunted, resulting in reduced H3K4 methylation and low expression levels of the locus-encoded tumor suppressors p16/Ink4a and p19/Arf. Conversely, elevated KMT2C expression increases its binding to the CDKN2A locus and co-activates gene transcription. Endogenous Kmt2c restoration reverses these chromatin and transcriptional effects and triggers Ink4a/Arf-dependent apoptosis. Underscoring the human relevance of this epistasis, we found that genomic alterations in KMT2C and CDKN2A were associated with similar transcriptional profiles in human HCC samples. These results collectively point to a new mechanism for disrupting CDKN2A activity during cancer development and, in doing so, link MLL3 to an established tumor suppressor network.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Proteína Supressora de Tumor p14ARF/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Cromatina , Carcinogênese
10.
Science ; 380(6645): eadd5327, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37167403

RESUMO

The response to tumor-initiating inflammatory and genetic insults can vary among morphologically indistinguishable cells, suggesting as yet uncharacterized roles for epigenetic plasticity during early neoplasia. To investigate the origins and impact of such plasticity, we performed single-cell analyses on normal, inflamed, premalignant, and malignant tissues in autochthonous models of pancreatic cancer. We reproducibly identified heterogeneous cell states that are primed for diverse, late-emerging neoplastic fates and linked these to chromatin remodeling at cell-cell communication loci. Using an inference approach, we revealed signaling gene modules and tissue-level cross-talk, including a neoplasia-driving feedback loop between discrete epithelial and immune cell populations that was functionally validated in mice. Our results uncover a neoplasia-specific tissue-remodeling program that may be exploited for pancreatic cancer interception.


Assuntos
Carcinogênese , Epigênese Genética , Pâncreas , Neoplasias Pancreáticas , Animais , Camundongos , Carcinogênese/genética , Carcinogênese/patologia , Comunicação Celular , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Pâncreas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia
11.
Nat Cancer ; 4(6): 872-892, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37142692

RESUMO

Immunotherapies that produce durable responses in some malignancies have failed in pancreatic ductal adenocarcinoma (PDAC) due to rampant immune suppression and poor tumor immunogenicity. We and others have demonstrated that induction of the senescence-associated secretory phenotype (SASP) can be an effective approach to activate anti-tumor natural killer (NK) cell and T cell immunity. In the present study, we found that the pancreas tumor microenvironment suppresses NK cell and T cell surveillance after therapy-induced senescence through enhancer of zeste homolog 2 (EZH2)-mediated epigenetic repression of proinflammatory SASP genes. EZH2 blockade stimulated production of SASP chemokines CCL2 and CXCL9/10, leading to enhanced NK cell and T cell infiltration and PDAC eradication in mouse models. EZH2 activity was also associated with suppression of chemokine signaling and cytotoxic lymphocytes and reduced survival in patients with PDAC. These results demonstrate that EZH2 represses the proinflammatory SASP and that EZH2 inhibition combined with senescence-inducing therapy could be a powerful means to achieve immune-mediated tumor control in PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Camundongos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Linhagem Celular Tumoral , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Fenótipo Secretor Associado à Senescência , Microambiente Tumoral/genética
12.
Nature ; 616(7958): 806-813, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36991128

RESUMO

Metastasis frequently develops from disseminated cancer cells that remain dormant after the apparently successful treatment of a primary tumour. These cells fluctuate between an immune-evasive quiescent state and a proliferative state liable to immune-mediated elimination1-6. Little is known about the clearing of reawakened metastatic cells and how this process could be therapeutically activated to eliminate residual disease in patients. Here we use models of indolent lung adenocarcinoma metastasis to identify cancer cell-intrinsic determinants of immune reactivity during exit from dormancy. Genetic screens of tumour-intrinsic immune regulators identified the stimulator of interferon genes (STING) pathway as a suppressor of metastatic outbreak. STING activity increases in metastatic progenitors that re-enter the cell cycle and is dampened by hypermethylation of the STING promoter and enhancer in breakthrough metastases or by chromatin repression in cells re-entering dormancy in response to TGFß. STING expression in cancer cells derived from spontaneous metastases suppresses their outgrowth. Systemic treatment of mice with STING agonists eliminates dormant metastasis and prevents spontaneous outbreaks in a T cell- and natural killer cell-dependent manner-these effects require cancer cell STING function. Thus, STING provides a checkpoint against the progression of dormant metastasis and a therapeutically actionable strategy for the prevention of disease relapse.


Assuntos
Neoplasias Pulmonares , Metástase Neoplásica , Animais , Camundongos , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/patologia , Ciclo Celular , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Metástase Neoplásica/tratamento farmacológico , Metástase Neoplásica/genética , Metástase Neoplásica/imunologia , Metástase Neoplásica/patologia , Recidiva Local de Neoplasia/tratamento farmacológico , Linfócitos T/imunologia , Fator de Crescimento Transformador beta , Células Matadoras Naturais/imunologia
13.
Cancer Discov ; 13(2): 432-453, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36302222

RESUMO

Cellular senescence involves a stable cell-cycle arrest coupled to a secretory program that, in some instances, stimulates the immune clearance of senescent cells. Using an immune-competent liver cancer model in which senescence triggers CD8 T cell-mediated tumor rejection, we show that senescence also remodels the cell-surface proteome to alter how tumor cells sense environmental factors, as exemplified by type II interferon (IFNγ). Compared with proliferating cells, senescent cells upregulate the IFNγ receptor, become hypersensitized to microenvironmental IFNγ, and more robustly induce the antigen-presenting machinery-effects also recapitulated in human tumor cells undergoing therapy-induced senescence. Disruption of IFNγ sensing in senescent cells blunts their immune-mediated clearance without disabling the senescence state or its characteristic secretory program. Our results demonstrate that senescent cells have an enhanced ability to both send and receive environmental signals and imply that each process is required for their effective immune surveillance. SIGNIFICANCE: Our work uncovers an interplay between tissue remodeling and tissue-sensing programs that can be engaged by senescence in advanced cancers to render tumor cells more visible to the adaptive immune system. This new facet of senescence establishes reciprocal heterotypic signaling interactions that can be induced therapeutically to enhance antitumor immunity. See related article by Marin et al., p. 410. This article is highlighted in the In This Issue feature, p. 247.


Assuntos
Senescência Celular , Neoplasias Hepáticas , Humanos , Interferon gama/farmacologia , Pontos de Checagem do Ciclo Celular , Microambiente Tumoral
14.
Cancer Discov ; 13(1): 146-169, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36264143

RESUMO

Menin interacts with oncogenic MLL1-fusion proteins, and small molecules that disrupt these associations are in clinical trials for leukemia treatment. By integrating chromatin-focused and genome-wide CRISPR screens with genetic, pharmacologic, and biochemical approaches, we discovered a conserved molecular switch between the MLL1-Menin and MLL3/4-UTX chromatin-modifying complexes that dictates response to Menin-MLL inhibitors. MLL1-Menin safeguards leukemia survival by impeding the binding of the MLL3/4-UTX complex at a subset of target gene promoters. Disrupting the Menin-MLL1 interaction triggers UTX-dependent transcriptional activation of a tumor-suppressive program that dictates therapeutic responses in murine and human leukemia. Therapeutic reactivation of this program using CDK4/6 inhibitors mitigates treatment resistance in leukemia cells that are insensitive to Menin inhibitors. These findings shed light on novel functions of evolutionarily conserved epigenetic mediators like MLL1-Menin and MLL3/4-UTX and are relevant to understand and target molecular pathways determining therapeutic responses in ongoing clinical trials. SIGNIFICANCE: Menin-MLL inhibitors silence a canonical HOX- and MEIS1-dependent oncogenic gene expression program in leukemia. We discovered a parallel, noncanonical transcriptional program involving tumor suppressor genes that are repressed in Menin-MLL inhibitor-resistant leukemia cells but that can be reactivated upon combinatorial treatment with CDK4/6 inhibitors to augment therapy responses. This article is highlighted in the In This Issue feature, p. 1.


Assuntos
Leucemia , Proteína de Leucina Linfoide-Mieloide , Humanos , Camundongos , Animais , Proteína de Leucina Linfoide-Mieloide/genética , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Linhagem Celular Tumoral , Fatores de Transcrição/genética , Leucemia/tratamento farmacológico , Cromatina , Mamíferos/genética , Mamíferos/metabolismo
15.
bioRxiv ; 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38234855

RESUMO

Control of cell identity and number is central to tissue function, yet principles governing organization of malignant cells in tumor tissues remain poorly understood. Using mathematical modeling and candidate-based analysis, we discover primary and metastatic pancreatic ductal adenocarcinoma (PDAC) organize in a stereotypic pattern whereby PDAC cells responding to WNT signals (WNT-R) neighbor WNT-secreting cancer cells (WNT-S). Leveraging lineage-tracing, we reveal the WNT-R state is transient and gives rise to the WNT-S state that is highly stable and committed to organizing malignant tissue. We further show that a subset of WNT-S cells expressing the Notch ligand DLL1 form a functional niche for WNT-R cells. Genetic inactivation of WNT secretion or Notch pathway components, or cytoablation of the WNT-S state disrupts PDAC tissue organization, suppressing tumor growth and metastasis. This work indicates PDAC growth depends on an intricately controlled equilibrium of functionally distinct cancer cell states, uncovering a fundamental principle governing solid tumor growth and revealing new opportunities for therapeutic intervention.

16.
Nat Cancer ; 3(11): 1367-1385, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36344707

RESUMO

The most prominent homozygous deletions in cancer affect chromosome 9p21.3 and eliminate CDKN2A/B tumor suppressors, disabling a cell-intrinsic barrier to tumorigenesis. Half of 9p21.3 deletions, however, also encompass a type I interferon (IFN) gene cluster; the consequences of this co-deletion remain unexplored. To functionally dissect 9p21.3 and other large genomic deletions, we developed a flexible deletion engineering strategy, MACHETE (molecular alteration of chromosomes with engineered tandem elements). Applying MACHETE to a syngeneic mouse model of pancreatic cancer, we found that co-deletion of the IFN cluster promoted immune evasion, metastasis and immunotherapy resistance. Mechanistically, IFN co-deletion disrupted type I IFN signaling in the tumor microenvironment, leading to marked changes in infiltrating immune cells and escape from CD8+ T-cell surveillance, effects largely driven by the poorly understood interferon epsilon. These results reveal a chromosomal deletion that disables both cell-intrinsic and cell-extrinsic tumor suppression and provide a framework for interrogating large deletions in cancer and beyond.


Assuntos
Interferons , Neoplasias , Animais , Camundongos , Deleção Cromossômica , Cromossomos , Evasão da Resposta Imune , Microambiente Tumoral/genética , Sequências de Repetição em Tandem
17.
J Clin Invest ; 132(18)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36106631

RESUMO

In addition to playing a major role in tumor cell biology, p53 generates a microenvironment that promotes antitumor immune surveillance via tumor-associated macrophages. We examined whether increasing p53 signaling in the tumor microenvironment influences antitumor T cell immunity. Our findings indicate that increased p53 signaling induced either pharmacologically with APR-246 (eprenetapopt) or in p53-overexpressing transgenic mice can disinhibit antitumor T cell immunity and augment the efficacy of immune checkpoint blockade. We demonstrated that increased p53 expression in tumor-associated macrophages induces canonical p53-associated functions such as senescence and activation of a p53-dependent senescence-associated secretory phenotype. This was linked with decreased expression of proteins associated with M2 polarization by tumor-associated macrophages. Our preclinical data led to the development of a clinical trial in patients with solid tumors combining APR-246 with pembrolizumab. Biospecimens from select patients participating in this ongoing trial showed that there was a suppression of M2-polarized myeloid cells and increase in T cell proliferation with therapy in those who responded to the therapy. Our findings, based on both genetic and a small molecule-based pharmacological approach, suggest that increasing p53 expression in tumor-associated macrophages reprograms the tumor microenvironment to augment the response to immune checkpoint blockade.


Assuntos
Inibidores de Checkpoint Imunológico , Macrófagos Associados a Tumor , Animais , Inibidores de Checkpoint Imunológico/farmacologia , Camundongos , Quinuclidinas , Microambiente Tumoral , Proteína Supressora de Tumor p53/genética
18.
Nature ; 608(7924): 795-802, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35978189

RESUMO

Although p53 inactivation promotes genomic instability1 and presents a route to malignancy for more than half of all human cancers2,3, the patterns through which heterogenous TP53 (encoding human p53) mutant genomes emerge and influence tumorigenesis remain poorly understood. Here, in a mouse model of pancreatic ductal adenocarcinoma that reports sporadic p53 loss of heterozygosity before cancer onset, we find that malignant properties enabled by p53 inactivation are acquired through a predictable pattern of genome evolution. Single-cell sequencing and in situ genotyping of cells from the point of p53 inactivation through progression to frank cancer reveal that this deterministic behaviour involves four sequential phases-Trp53 (encoding mouse p53) loss of heterozygosity, accumulation of deletions, genome doubling, and the emergence of gains and amplifications-each associated with specific histological stages across the premalignant and malignant spectrum. Despite rampant heterogeneity, the deletion events that follow p53 inactivation target functionally relevant pathways that can shape genomic evolution and remain fixed as homogenous events in diverse malignant populations. Thus, loss of p53-the 'guardian of the genome'-is not merely a gateway to genetic chaos but, rather, can enable deterministic patterns of genome evolution that may point to new strategies for the treatment of TP53-mutant tumours.


Assuntos
Carcinogênese , Progressão da Doença , Genes p53 , Genoma , Perda de Heterozigosidade , Neoplasias Pancreáticas , Proteína Supressora de Tumor p53 , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Carcinogênese/genética , Carcinogênese/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Evolução Molecular , Deleção de Genes , Genes p53/genética , Genoma/genética , Camundongos , Modelos Genéticos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteína Supressora de Tumor p53/genética
19.
Nat Med ; 28(8): 1646-1655, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35970919

RESUMO

The incidence of rectal cancer is increasing in patients younger than 50 years. Locally advanced rectal cancer is still treated with neoadjuvant radiation, chemotherapy and surgery, but recent evidence suggests that patients with a complete response can avoid surgery permanently. To define correlates of response to neoadjuvant therapy, we analyzed genomic and transcriptomic profiles of 738 untreated rectal cancers. APC mutations were less frequent in the lower than in the middle and upper rectum, which could explain the more aggressive behavior of distal tumors. No somatic alterations had significant associations with response to neoadjuvant therapy in a treatment-agnostic manner, but KRAS mutations were associated with faster relapse in patients treated with neoadjuvant chemoradiation followed by consolidative chemotherapy. Overexpression of IGF2 and L1CAM was associated with decreased response to neoadjuvant therapy. RNA-sequencing estimates of immune infiltration identified a subset of microsatellite-stable immune hot tumors with increased response and prolonged disease-free survival.


Assuntos
Terapia Neoadjuvante , Neoplasias Retais , Quimiorradioterapia , Genômica , Humanos , Recidiva Local de Neoplasia/patologia , Estadiamento de Neoplasias , Neoplasias Retais/tratamento farmacológico , Neoplasias Retais/terapia , Estudos Retrospectivos , Transcriptoma/genética , Resultado do Tratamento
20.
Proc Natl Acad Sci U S A ; 119(17): e2110557119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35442775

RESUMO

Anticancer drug development campaigns often fail due to an incomplete understanding of the therapeutic index differentiating the efficacy of the agent against the cancer and its on-target toxicities to the host. To address this issue, we established a versatile preclinical platform in which genetically defined cancers are produced using somatic tissue engineering in transgenic mice harboring a doxycycline-inducible short hairpin RNA against the target of interest. In this system, target inhibition is achieved by the addition of doxycycline, enabling simultaneous assessment of efficacy and toxicity in the same animal. As proof of concept, we focused on CDK9­a cancer target whose clinical development has been hampered by compounds with poorly understood target specificity and unacceptable toxicities. We systematically compared phenotypes produced by genetic Cdk9 inhibition to those achieved using a recently developed highly specific small molecule CDK9 inhibitor and found that both perturbations led to robust antitumor responses. Remarkably, nontoxic levels of CDK9 inhibition could achieve significant treatment efficacy, and dose-dependent toxicities produced by prolonged CDK9 suppression were largely reversible upon Cdk9 restoration or drug withdrawal. Overall, these results establish a versatile in vivo target validation platform that can be employed for rapid triaging of therapeutic targets and lend support to efforts aimed at advancing CDK9 inhibitors for cancer therapy.


Assuntos
Antineoplásicos , Neoplasias , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Quinase 9 Dependente de Ciclina/metabolismo , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...