Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36986030

RESUMO

Few-layer graphene was successfully synthesized on copper foil via chemical vapor deposition with methanol as a carbon source. This was confirmed by optical microscopy observation, Raman spectra measurement, I2D/IG ratio calculation, and 2D-FWHM value comparisons. Monolayer graphene was also found in similar standard procedures, but it required higher growth temperature and longer time periods. The cost-efficient growth conditions for few-layer graphene are thoroughly discussed via TEM observation and AFM measurement. In addition, it has been confirmed that the growth period can be shortened by increasing growth temperature. With the H2 gas flow rate fixed at 15 sccm, few-layer graphene was synthesized at the lower growth temperature of 700 °C in 30 min, and at 900 °C growth temperature in only 5 min. Successful growth was also achieved without adding hydrogen gas flow; this is probably because H2 can be induced from the decomposition of methanol. Through further defects study of few-layer graphene via TEM observation and AFM measurement, we tried to find possible ways for efficiency and quality management in graphene synthesis in industrial applications. Lastly, we investigated graphene formation after pre-treatment with different gas compositions, and found that gas selection is a crucial factor for a successful synthesis.

2.
J Hazard Mater ; 276: 43-51, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24858051

RESUMO

Carbon materials including carbon spheres and nanotubes were formed from acetylene decomposition on hydrogen-reduced SBA-15 and Ni-SBA-15 at 650-850°C. The physicochemical characteristics of SBA-15, Ni-SBA-15 and carbon materials were analyzed by field emission scanning electronic microscopy (FE-SEM), Raman spectrometry, and energy dispersive spectrometry (EDS). In addition, the contents of polyaromatic hydrocarbons (PAHs) in the tar and residue and volatile organic compounds (VOCs) in the exhaust were determined during acetylene decomposition on SBA-15 and Ni-SBA-15. Spherical carbon materials were observed on SBA-15 during acetylene decomposition at 750 and 850°C. Carbon filaments and ball spheres were formed on Ni-SBA-15 at 650-850°C. Raman spectroscopy revealed peaks at 1290 (D-band, disorder mode, amorphous carbon) and 1590 (G-band, graphite sp(2) structure)cm(-1). Naphthalene (2 rings), pyrene (4 rings), phenanthrene (3 rings), and fluoranthene (4 rings) were major PAHs in tar and residues. Exhaust constituents of hydrocarbon (as propane), H2, and C2H2 were 3.9-2.6/2.7-1.5, 1.4-2.8/2.6-4.3, 4.2-2.4/3.2-1.7% when acetylene was decomposed on SBA-15/Ni-SBA-15, respectively, corresponding to temperatures ranging from 650 to 850°C. The concentrations of 52 VOCs ranged from 9359 to 5658 and 2488 to 1104ppm for SBA-15 and Ni-SBA-15 respectively, at acetylene decomposition temperatures from 650 to 850°C, and the aromatics contributed more than 87% fraction of VOC concentrations.


Assuntos
Acetileno/química , Carbono/química , Dióxido de Silício/química , Adsorção , Microscopia Eletrônica de Varredura , Nitrogênio/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Análise Espectral Raman , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA