Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Metab ; 81: 101887, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280449

RESUMO

OBJECTIVE: Lipotoxic injury from renal lipid accumulation in obesity and type 2 diabetes (T2D) is implicated in associated kidney damage. However, models examining effects of renal ectopic lipid accumulation independent of obesity or T2D are lacking. We generated renal tubule-specific adipose triglyceride lipase knockout (RT-SAKO) mice to determine if this targeted triacylglycerol (TAG) over-storage affects glycemic control and kidney health. METHODS: Male and female RT-SAKO mice and their control littermates were tested for changes in glycemic control at 10-12 and 16-18 weeks of age. Markers of kidney health and blood lipid and hormone concentrations were analyzed. Kidney and blood lysophosphatidic acid (LPA) levels were measured, and a role for LPA in mediating impaired glycemic control was evaluated using the LPA receptor 1/3 inhibitor Ki-16425. RESULTS: All groups remained insulin sensitive, but 16- to 18-week-old male RT-SAKO mice became glucose intolerant, without developing kidney inflammation or fibrosis. Rather, these mice displayed lower circulating insulin and glucagon-like peptide 1 (GLP-1) levels. Impaired first-phase glucose-stimulated insulin secretion was detected and restored by Exendin-4. Kidney and blood LPA levels were elevated in older male but not female RT-SAKO mice, associated with increased kidney diacylglycerol kinase epsilon. Inhibition of LPA-mediated signaling restored serum GLP-1 levels, first-phase insulin secretion, and glucose tolerance. CONCLUSIONS: TAG over-storage alone is insufficient to cause renal tubule lipotoxicity. This work is the first to show that endogenously derived LPA modulates GLP-1 levels in vivo, demonstrating a new mechanism of kidney-gut-pancreas crosstalk to regulate insulin secretion and glucose homeostasis.


Assuntos
Diabetes Mellitus Tipo 2 , Peptídeo 1 Semelhante ao Glucagon , Animais , Feminino , Masculino , Camundongos , Diabetes Mellitus Tipo 2/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glucose/metabolismo , Inflamação/metabolismo , Insulina/metabolismo , Secreção de Insulina , Rim/metabolismo , Metabolismo dos Lipídeos , Lipídeos , Obesidade/metabolismo
2.
Mol Neurodegener ; 18(1): 65, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37759260

RESUMO

BACKGROUND: RNA editing at the Q/R site of GluA2 occurs with ~99% efficiency in the healthy brain, so that the majority of AMPARs contain GluA2(R) instead of the exonically encoded GluA2(Q). Reduced Q/R site editing infcreases AMPA receptor calcium permeability and leads to dendritic spine loss, neurodegeneration, seizures and learning impairments. Furthermore, GluA2 Q/R site editing is impaired in Alzheimer's disease (AD), raising the possibility that unedited GluA2(Q)-containing AMPARs contribute to synapse loss and neurodegeneration in AD. If true, then inhibiting expression of unedited GluA2(Q), while maintaining expression of GluA2(R), may be a novel strategy of preventing synapse loss and neurodegeneration in AD. METHODS: We engineered mice with the 'edited' arginine codon (CGG) in place of the unedited glutamine codon (CAG) at position 607 of the Gria2 gene. We crossbred this line with the J20 mouse model of AD and conducted anatomical, electrophysiological and behavioural assays to determine the impact of eliminating unedited GluA2(Q) expression on AD-related phenotypes. RESULTS: Eliminating unedited GluA2(Q) expression in AD mice prevented dendritic spine loss and hippocampal CA1 neurodegeneration as well as improved working and reference memory in the radial arm maze. These phenotypes were improved independently of Aß pathology and ongoing seizure susceptibility. Surprisingly, our data also revealed increased spine density in non-AD mice with exonically encoded GluA2(R) as compared to their wild-type littermates, suggesting an unexpected and previously unknown role for unedited GluA2(Q) in regulating dendritic spines. CONCLUSION: The Q/R editing site of the AMPA receptor subunit GluA2 may act as an epigenetic switch that regulates dendritic spines, neurodegeneration and memory deficits in AD.


Assuntos
Doença de Alzheimer , Espinhas Dendríticas , Animais , Camundongos , Receptores de AMPA , Doença de Alzheimer/genética , Epigênese Genética , Cognição
3.
Endocrinology ; 163(1)2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34718519

RESUMO

Pancreatic ß-cells can secrete insulin via 2 pathways characterized as KATP channel -dependent and -independent. The KATP channel-independent pathway is characterized by a rise in several potential metabolic signaling molecules, including the NADPH/NADP+ ratio and α-ketoglutarate (αKG). Prolyl hydroxylases (PHDs), which belong to the αKG-dependent dioxygenase superfamily, are known to regulate the stability of hypoxia-inducible factor α. In the current study, we assess the role of PHDs in vivo using the pharmacological inhibitor dimethyloxalylglycine (DMOG) and generated ß-cell-specific knockout (KO) mice for all 3 isoforms of PHD (ß-PHD1 KO, ß-PHD2 KO, and ß-PHD3 KO mice). DMOG inhibited in vivo insulin secretion in response to glucose challenge and inhibited the first phase of insulin secretion but enhanced the second phase of insulin secretion in isolated islets. None of the ß-PHD KO mice showed any significant in vivo defects associated with glucose tolerance and insulin resistance except for ß-PHD2 KO mice which had significantly increased plasma insulin during a glucose challenge. Islets from both ß-PHD1 KO and ß-PHD3 KO had elevated ß-cell apoptosis and reduced ß-cell mass. Isolated islets from ß-PHD1 KO and ß-PHD3 KO had impaired glucose-stimulated insulin secretion and glucose-stimulated increases in the ATP/ADP and NADPH/NADP+ ratio. All 3 PHD isoforms are expressed in ß-cells, with PHD3 showing the most distinct expression pattern. The lack of each PHD protein did not significantly impair in vivo glucose homeostasis. However, ß-PHD1 KO and ß-PHD3 KO mice had defective ß-cell mass and islet insulin secretion, suggesting that these mice may be predisposed to developing diabetes.


Assuntos
Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Prolil Hidroxilases/metabolismo , Isoformas de Proteínas/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Apoptose , Regulação da Expressão Gênica , Glucose/metabolismo , Teste de Tolerância a Glucose , Homeostase , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Ácidos Cetoglutáricos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADP/metabolismo , Fosforilação Oxidativa , Consumo de Oxigênio , Fenótipo , Domínios Proteicos
4.
JCI Insight ; 6(16)2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34264866

RESUMO

The α-ketoglutarate-dependent dioxygenase, prolyl-4-hydroxylase 3 (PHD3), is an HIF target that uses molecular oxygen to hydroxylate peptidyl prolyl residues. Although PHD3 has been reported to influence cancer cell metabolism and liver insulin sensitivity, relatively little is known about the effects of this highly conserved enzyme in insulin-secreting ß cells in vivo. Here, we show that the deletion of PHD3 specifically in ß cells (ßPHD3KO) was associated with impaired glucose homeostasis in mice fed a high-fat diet. In the early stages of dietary fat excess, ßPHD3KO islets energetically rewired, leading to defects in the management of pyruvate fate and a shift from glycolysis to increased fatty acid oxidation (FAO). However, under more prolonged metabolic stress, this switch to preferential FAO in ßPHD3KO islets was associated with impaired glucose-stimulated ATP/ADP rises, Ca2+ fluxes, and insulin secretion. Thus, PHD3 might be a pivotal component of the ß cell glucose metabolism machinery in mice by suppressing the use of fatty acids as a primary fuel source during the early phases of metabolic stress.


Assuntos
Ácidos Graxos/efeitos adversos , Glucose/metabolismo , Resistência à Insulina , Células Secretoras de Insulina/enzimologia , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Feminino , Glicólise , Humanos , Secreção de Insulina , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Knockout , Oxirredução , Pró-Colágeno-Prolina Dioxigenase/genética
5.
Endocrinology ; 160(12): 2825-2836, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31580427

RESUMO

The transcription factor aryl hydrocarbon receptor nuclear translocator (ARNT)/hypoxia-inducible factor (HIF)-1ß (ARNT/HIF1ß) plays a key role in maintaining ß-cell function and has been shown to be one of the most downregulated transcription factors in islets from patients with type 2 diabetes. We have shown a role for ARNT/HIF1ß in glucose sensing and insulin secretion in vitro and no defects in in vivo glucose homeostasis. To gain a better understanding of the role of ARNT/HIF1ß in the development of diabetes, we placed control (+/+/Cre) and ß-cell-specific ARNT/HIF1ß knockout (fl/fl/Cre) mice on a high-fat diet (HFD). Unlike the control (+/+/Cre) mice, HFD-fed fl/fl/Cre mice had no impairment in in vivo glucose tolerance. The lack of impairment in HFD-fed fl/fl/Cre mice was partly due to an improved islet glucose-stimulated NADPH/NADP+ ratio and glucose-stimulated insulin secretion. The effects of the HFD-rescued insulin secretion in fl/fl/Cre islets could be reproduced by treating low-fat diet (LFD)-fed fl/fl/Cre islets with the lipid signaling molecule 1-monoacylglcyerol. This suggests that the defects seen in LFD-fed fl/fl/Cre islet insulin secretion involve lipid signaling molecules. Overall, mice lacking ARNT/HIF1ß in ß-cells have altered lipid signaling in vivo and are resistant to an HFD's ability to induce diabetes.


Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Diabetes Mellitus Experimental/metabolismo , Células Secretoras de Insulina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Diabetes Mellitus Experimental/etiologia , Dieta Hiperlipídica , Diglicerídeos , Glucose/metabolismo , Homeostase , Secreção de Insulina , Masculino , Camundongos Knockout , NADP/metabolismo
6.
Appl Physiol Nutr Metab ; 42(6): 647-655, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28177704

RESUMO

Tre-2/USP6, BUB2, cdc16 domain family, member 1 (TBC1D1), a Rab-GTPase activating protein, is a paralogue of AS160, and has been implicated in the canonical insulin-signaling cascade in peripheral tissues. More recently, TBC1D1 was identified in rat and human pancreatic islets; however, the islet function of TBC1D1 remains not fully understood. We examined the role of TBC1D1 in glucose homeostasis and insulin secretion utilizing a rat knockout (KO) model. Chow-fed TBC1D1 KO rats had improved insulin action but impaired glucose-tolerance tests (GTT) and a lower insulin response during an intraperitoneal GTT compared with wild-type (WT) rats. The in vivo data suggest there may be an islet defect. Glucose-stimulated insulin secretion was higher in isolated KO rat islets compared with WT animals, suggesting TBC1D1 is a negative regulator of insulin secretion. Moreover, KO rats displayed reduced ß-cell mass, which likely accounts for the impaired whole-body glucose homeostasis. This ß-cell mass reduction was associated with increased active caspase 3, and unaltered Ki67 or urocortin 3, suggesting the induction of apoptosis rather than decreased proliferation or dedifferentiation may account for the decline in islet mass. A similar phenotype was observed in TBC1D1 heterozygous animals, highlighting the sensitivity of the pancreas to subtle reductions in TBC1D1 protein. An 8-week pair-fed high-fat diet did not further alter ß-cell mass or apoptosis in KO rats, suggesting that dietary lipids per se, do not lead to a further impairment in glucose homeostasis. The present study establishes a fundamental role for TBC1D1 in maintaining in vivo ß-cell mass.


Assuntos
Glicemia/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Homeostase , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Proteínas/metabolismo , Animais , Apoptose , Caspase 3/genética , Caspase 3/metabolismo , Hormônio Liberador da Corticotropina/genética , Hormônio Liberador da Corticotropina/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Feminino , Intolerância à Glucose/genética , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Insulina/sangue , Insulina/metabolismo , Resistência à Insulina , Secreção de Insulina , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Masculino , Proteínas/genética , Ratos , Transdução de Sinais , Urocortinas/genética , Urocortinas/metabolismo
7.
Physiol Rep ; 4(5)2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26997627

RESUMO

Type 2 diabetes is associated with impaired nutrient-regulated anaplerosis and insulin secretion in pancreatic ß-cells. One key anaplerotic substrate that may be involved in regulating insulin release is α-ketoglutarate (αKG). Since prolyl hydroxylase domain proteins (PHDs) can metabolize cytosolic αKG, we sought to explore the role of this enzyme in the regulation of ß-cell function. The oxygen-sensing PHDs regulate the stability of hypoxia-inducible factor 1α (HIF1α) as well as other proline-containing proteins by catalyzing the hydroxylation of proline residues. This reaction is dependent on sufficient levels of oxygen, iron, and αKG. In the present study, we utilized both pharmacological and genetic approaches to assess the impact of inhibiting PHD activity on ß-cell function. We demonstrate that ethyl-3,4-dihydroxybenzoate (EDHB), a PHD inhibitor, significantly blunted glucose-stimulated insulin secretion (GSIS) from 832/13 clonal cells, rat, and human islets. EDHB reduced glucose utilization, ATP/ADP ratio, and key TCA cycle intermediates such as pyruvate, citrate, fumarate, and malate. siRNA-mediated knockdown of PHD1 and PHD3 inhibited GSIS, whereas siRNA-mediated knockdown of PHD2 had no effect on GSIS. Taken together, the current results demonstrate an important role for PHDs as mediators of islet insulin secretion.


Assuntos
Prolina Dioxigenases do Fator Induzível por Hipóxia/fisiologia , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Animais , Linhagem Celular , Técnicas de Silenciamento de Genes/métodos , Humanos , Secreção de Insulina , Estrutura Terciária de Proteína/fisiologia , Ratos
8.
Diabetologia ; 58(12): 2832-42, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26409461

RESUMO

AIMS/HYPOTHESIS: It has been suggested that the transcription factor ARNT/HIF1ß is critical for maintaining in vivo glucose homeostasis and pancreatic beta cell glucose-stimulated insulin secretion (GSIS). Our goal was to gain more insights into the metabolic defects seen after the loss of ARNT/HIF1ß in beta cells. METHODS: The in vivo and in vitro consequences of the loss of ARNT/HIF1ß were investigated in beta cell specific Arnt/Hif1ß knockout mice (ß-Arnt (fl/fl/Cre) mice). RESULTS: The only in vivo defects found in ß-Arnt (fl/fl/Cre) mice were significant increases in the respiratory exchange ratio and in vivo carbohydrate oxidation, and a decrease in lipid oxidation. The mitochondrial oxygen consumption rate was unaltered in mouse ß-Arnt (fl/fl/Cre) islets upon glucose stimulation. ß-Arnt (fl/fl/Cre) islets had an impairment in the glucose-stimulated increase in Ca(2+) signalling and a reduced insulin secretory response to glucose in the presence of KCl and diazoxide. The glucose-stimulated increase in the NADPH/NADP(+) ratio was reduced in ß-Arnt (fl/fl/Cre) islets. The reduced GSIS and NADPH/NADP(+) levels in ß-Arnt (fl/fl/Cre) islets could be rescued by treatment with membrane-permeable tricarboxylic acid intermediates. Small interfering (si)RNA mediated knockdown of ARNT/HIF1ß in human islets also inhibited GSIS. These results suggest that the regulation of GSIS by the KATP channel-dependent and -independent pathways is affected by the loss of ARNT/HIF1ß in islets. CONCLUSIONS/INTERPRETATION: This study provides three new insights into the role of ARNT/HIF1ß in beta cells: (1) ARNT/HIF1ß deletion in mice impairs GSIS ex vivo; (2) ß-Arnt (fl/fl/Cre) mice have an increased respiratory exchange ratio; and (3) ARNT/HIF1ß is required for GSIS in human islets.


Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Glucose/metabolismo , Homeostase/genética , Células Secretoras de Insulina/enzimologia , Animais , Translocador Nuclear Receptor Aril Hidrocarboneto/deficiência , Teste de Tolerância a Glucose , Hormônio do Crescimento Humano/metabolismo , Humanos , Insulina/metabolismo , Secreção de Insulina , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Knockout , NADP/metabolismo , Consumo de Oxigênio , Troca Gasosa Pulmonar
9.
Antimicrob Agents Chemother ; 47(2): 658-64, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12543674

RESUMO

RWJ-54428 (MC-02,479) is a new cephalosporin active against gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). The potency of this new cephalosporin against MRSA is related to a high affinity for penicillin-binding protein 2a (PBP 2a), as assessed in a competition assay using biotinylated ampicillin as the reporter molecule. RWJ-54428 had high activity against MRSA strains COL and 67-0 (MIC of 1 micro g/ml) and also showed affinity for PBP 2a, with a 50% inhibitory concentration (IC(50)) of 0.7 micro g/ml. RWJ-54428 also displayed excellent affinity for PBP 5 from Enterococcus hirae R40, with an IC(50) of 0.8 micro g/ml and a MIC of 0.5 micro g/ml. The affinity of RWJ-54428 for PBPs of beta-lactam-susceptible S. aureus (MSSA), enterococci (E. hirae), and Streptococcus pneumoniae showed that the good affinity of RWJ-54428 for MRSA PBP 2a and E. hirae PBP 5 does not compromise its binding to susceptible PBPs. RWJ-54428 showed stability to hydrolysis by purified type A beta-lactamase isolated from S. aureus PC1. In addition, RWJ-54428 displayed low MICs against strains of S. aureus bearing the four classes of staphylococcal beta-lactamases, including beta-lactamase hyperproducers. The frequency of isolation of resistant mutants to RWJ-54428 from MRSA strains was very low. In summary, RWJ-54428 has high affinity to multiple PBPs and is stable to beta-lactamase, properties that may explain our inability to find resistance by standard methods. These data are consistent with its excellent activity against beta-lactam-resistant gram-positive bacteria.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias , Proteínas de Transporte/farmacologia , Cefalosporinas/farmacologia , Enterococcus/efeitos dos fármacos , Hexosiltransferases , Muramilpentapeptídeo Carboxipeptidase/farmacologia , Peptidil Transferases , Staphylococcus aureus/efeitos dos fármacos , Streptococcus pneumoniae/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Resistência a Meticilina , Testes de Sensibilidade Microbiana , Muramilpentapeptídeo Carboxipeptidase/metabolismo , Proteínas de Ligação às Penicilinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...