Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(11): 113384, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37934666

RESUMO

Deletion of the obsessive-compulsive disorder (OCD)-associated gene SAP90/PSD-95-associated protein 3 (Sapap3), which encodes a postsynaptic anchoring protein at corticostriatal synapses, causes OCD-like motor behaviors in mice. While corticostriatal synaptic dysfunction is central to this phenotype, the striatum efficiently adapts to pathological changes, often in ways that expand upon the original circuit impairment. Here, we show that SAPAP3 deletion causes non-synaptic and pathway-specific alterations in dorsolateral striatum circuit function. While somatic excitability was elevated in striatal projection neurons (SPNs), dendritic excitability was exclusively enhanced in direct pathway SPNs. Layered on top of this, cholinergic modulation was altered in opposing ways: striatal cholinergic interneuron density and evoked acetylcholine release were elevated, while basal muscarinic modulation of SPNs was reduced. These data describe how SAPAP3 deletion alters the striatal landscape upon which impaired corticostriatal inputs will act, offering a basis for how pathological synaptic integration and unbalanced striatal output underlying OCD-like behaviors may be shaped.


Assuntos
Proteínas do Tecido Nervoso , Transtorno Obsessivo-Compulsivo , Camundongos , Animais , Proteínas do Tecido Nervoso/metabolismo , Corpo Estriado/metabolismo , Neostriado/metabolismo , Transtorno Obsessivo-Compulsivo/genética , Colinérgicos/metabolismo
2.
Neuron ; 108(6): 1091-1102.e5, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33080228

RESUMO

Corticostriatal synaptic integration is partitioned among striosome (patch) and matrix compartments of the dorsal striatum, allowing compartmentalized control of discrete aspects of behavior. Despite the significance of such organization, it's unclear how compartment-specific striatal output is dynamically achieved, particularly considering new evidence that overlap of afferents is substantial. We show that dopamine oppositely shapes responses to convergent excitatory inputs in mouse striosome and matrix striatal spiny projection neurons (SPNs). Activation of postsynaptic D1 dopamine receptors promoted the generation of long-lasting synaptically evoked "up-states" in matrix SPNs but opposed it in striosomes, which were more excitable under basal conditions. Differences in dopaminergic modulation were mediated, in part, by dendritic voltage-gated calcium channels (VGCCs): pharmacological manipulation of L-type VGCCs reversed compartment-specific responses to D1 receptor activation. These results support a novel mechanism for the selection of striatal circuit components, where fluctuating levels of dopamine shift the balance of compartment-specific striatal output.


Assuntos
Corpo Estriado/efeitos dos fármacos , Dendritos/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Receptores de Dopamina D1/antagonistas & inibidores , Animais , Benzazepinas/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/metabolismo , Corpo Estriado/metabolismo , Dendritos/metabolismo , Antagonistas de Dopamina/farmacologia , Isradipino/farmacologia , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Receptores de Dopamina D1/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA