Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38727371

RESUMO

Nicotine activates nicotinic acetylcholine receptors (nAChRs), which are overexpressed in numerous cancer types, leading to signaling pathways that increase lung cancer invasiveness and resistance to chemotherapeutic agents. In this study, the effects of APS12-2, a synthetic analog of marine sponge toxin that acts as an antagonist of nAChRs, was investigated in vitro on A549 human lung adenocarcinoma cells and non-tumorigenic human lung epithelial BEAS-2B cells. In addition, gelatin nanoparticles (GNPs) loaded with APS12-2 (APS12-2-GNPs) were prepared and their effects were compared with those of free APS12-2. Nicotine reduced cytotoxicity, the formation of reactive oxygen species, and the formation of lipid droplets caused by cisplatin on A549 cells. The effects of nicotine on the decreased efficacy of cisplatin were reduced by APS12-2 and APS12-2-GNPs. APS12-2-GNPs showed a substantial advantage compared with free APS12-2; the cytotoxicity of APS12-2 on BEAS-2B cells was greatly reduced when APS12-2 was loaded in GNPs, whereas the cytotoxicity on A549 cells was only slightly reduced. Our results suggest that both APS12-2 and APS12-2-GNPs hold promise as supportive agents in the cisplatin-based chemotherapy of lung cancer.

2.
Materials (Basel) ; 16(9)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37176169

RESUMO

We studied inflammatory and oxidative stress-related parameters and cytotoxic response of human umbilical vein endothelial cells (HUVEC) to a 24 h treatment with milled particles simulating debris involved in sandblasting of orthopedic implants (OI). We used different abrasives (corundum-(Al2O3), used corundum retrieved from removed OI (u. Al2O3), and zirconia/silica composite (ZrO2/SiO2)). Morphological changes were observed by scanning electron microscopy (SEM). Concentration of Interleukins IL-6 and IL-1ß and Tumor Necrosis Factor α (TNF)-α was assessed by enzyme-linked immunosorbent assay (ELISA). Activity of Cholinesterase (ChE) and Glutathione S-transferase (GST) was measured by spectrophotometry. Reactive oxygen species (ROS), lipid droplets (LD) and apoptosis were measured by flow cytometry (FCM). Detachment of the cells from glass and budding of the cell membrane did not differ in the treated and untreated control cells. Increased concentration of IL-1ß and of IL-6 was found after treatment with all tested particle types, indicating inflammatory response of the treated cells. Increased ChE activity was found after treatment with u. Al2O3 and ZrO2/SiO2. Increased GST activity was found after treatment with ZrO2/SiO2. Increased LD quantity but not ROS quantity was found after treatment with u. Al2O3. No cytotoxicity was detected after treatment with u. Al2O3. The tested materials in concentrations added to in vitro cell lines were found non-toxic but bioactive and therefore prone to induce a response of the human body to OI.

3.
Scanning ; 2023: 5541050, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37096016

RESUMO

The hematopoietic stem cell (HSC) niche undergoes detrimental changes with age. The molecular differences between young and old niches are well studied and understood; however, young and old niches have not yet been extensively characterized in terms of morphology. In the present work, a 2D stromal model of young and old HSC niches isolated from bone marrow was investigated using light and scanning electron microscopy (SEM) to characterize cell density after one, two, or three weeks of culturing, cell shape, and cell surface morphological features. Our work is aimed at identifying morphological differences between young and old niche cells that could be used to discriminate between their respective murine HSC niches. The results show several age-specific morphological characteristics. The old niches differ from the young ones in terms of lower cell proliferating capacity, increased cell size with a flattened appearance, increased number of adipocytes, and the presence of tunneling nanotubes. In addition, proliferating cell clusters are present in the young niches but not in the old niches. Together, these characteristics could be used as a relatively simple and reliable tool to discriminate between young and old murine HSC niches and as a complementary approach to imaging with specific cellular markers.


Assuntos
Medula Óssea , Células-Tronco Hematopoéticas , Animais , Camundongos , Células-Tronco Hematopoéticas/metabolismo , Medula Óssea/metabolismo
4.
Int J Mol Sci ; 24(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36901780

RESUMO

Small cellular particles (SCPs) are being considered for their role in cell-to-cell communication. We harvested and characterized SCPs from spruce needle homogenate. SCPs were isolated by differential ultracentrifugation. They were imaged by scanning electron microscope (SEM) and cryogenic transmission electron microscope (cryo TEM), assessed for their number density and hydrodynamic diameter by interferometric light microscopy (ILM) and flow cytometry (FCM), total phenolic content (TPC) by UV-vis spectroscopy, and terpene content by gas chromatography-mass spectrometry (GC-MS). The supernatant after ultracentrifugation at 50,000× g contained bilayer-enclosed vesicles whereas in the isolate we observed small particles of other types and only a few vesicles. The number density of cell-sized particles (CSPs) (larger than 2 µm) and meso-sized particles (MSPs) (cca 400 nm-2 µm) was about four orders of magnitude lower than the number density of SCPs (sized below 500 nm). The average hydrodynamic diameter of SCPs measured in 10,029 SCPs was 161 ± 133 nm. TCP decreased considerably due to 5-day aging. Volatile terpenoid content was found in the pellet after 300× g. The above results indicate that spruce needle homogenate is a source of vesicles to be explored for potential delivery use.


Assuntos
Picea , Terpenos/análise , Microscopia , Citometria de Fluxo , Cromatografia Gasosa-Espectrometria de Massas
5.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36834843

RESUMO

The preparation of autologous platelet and extracellular vesicle-rich plasma (PVRP) has been explored in many medical fields with the aim to benefit from its healing potential. In parallel, efforts are being invested to understand the function and dynamics of PVRP that is complex in its composition and interactions. Some clinical evidence reveals beneficial effects of PVRP, while some report that there were no effects. To optimize the preparation methods, functions and mechanisms of PVRP, its constituents should be better understood. With the intention to promote further studies of autologous therapeutic PVRP, we performed a review on some topics regarding PVRP composition, harvesting, assessment and preservation, and also on clinical experience following PVRP application in humans and animals. Besides the acknowledged actions of platelets, leukocytes and different molecules, we focus on extracellular vesicles that were found abundant in PVRP.


Assuntos
Plasma Rico em Plaquetas , Humanos , Animais , Plaquetas , Cicatrização , Leucócitos
6.
Nanomaterials (Basel) ; 12(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36234621

RESUMO

Electrochemical-based biosensors have the potential to be a fast, label-free, simple approach to detecting the effects of cytotoxic substances in liquid media. In the work presented here, a cell-based electrochemical biosensor was developed and evaluated to detect the cytotoxic effects of Zn2+ ions in a solution as a reference test chemical. A549 cells were attached to the surface of stainless-steel electrodes. After treatment with ZnCl2, the morphological changes of the cells and, ultimately, their death and detachment from the electrode surface as cytotoxic effects were detected through changes in the electrical signal. Electrochemical cell-based impedance spectroscopy (ECIS) measurements were conducted with cytotoxicity tests and microscopic observation to investigate the behavior of the A549 cells. As expected, the Zn2+ ions caused changes in cell confluency and spreading, which were checked by light microscopy, while the cell morphology and attachment pattern were explored by scanning electron microscopy (SEM). The ECIS measurements confirmed the ability of the biosensor to detect the effects of Zn2+ ions on A549 cells attached to the low-cost stainless-steel surfaces and its potential for use as an inexpensive detector for a broad range of chemicals and nanomaterials in their cytotoxic concentrations.

7.
Cancers (Basel) ; 14(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35954365

RESUMO

Tumor growth and metastasis strongly rely on cell-cell communication. One of the mechanisms by which tumor cells communicate involves the release and uptake of lipid membrane encapsulated particles full of bioactive molecules, called extracellular vesicles (EVs). EV exchange between cancer cells may induce phenotype changes in the recipient cells. Our work investigated the effect of EVs released by teratocarcinoma cells on glioblastoma (GBM) cells. EVs were isolated by differential centrifugation and analyzed through Western blot, nanoparticle tracking analysis, and electron microscopy. The effect of large EVs on GBM cells was tested through cell migration, proliferation, and drug-sensitivity assays, and resulted in a specific impairment in cell migration with no effects on proliferation and drug-sensitivity. Noticeably, we found the presence of the EGF-CFC founder member CRIPTO on both small and large EVs, in the latter case implicated in the EV-mediated negative regulation of GBM cell migration. Our data let us propose a novel route and function for CRIPTO during tumorigenesis, highlighting a complex scenario regulating its effect, and paving the way to novel strategies to control cell migration, to ultimately improve the prognosis and quality of life of GBM patients.

8.
Int J Mol Sci ; 23(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35955586

RESUMO

We studied the efficiency of three culture series of the microalgae Phaeodactylum tricornutum (P. tricornutum) and bacteria Thalassospira sp. (axenic microalgae, bacterial culture and co-culture of the two) in removing bisphenols (BPs) from their growth medium. Bacteria were identified by 16S ribosomal RNA polymerase chain reaction (16S rRNA PCR). The microorganism growth rate was determined by flow cytometry. Cultures and isolates of their small cellular particles (SCPs) were imaged by scanning electron microscopy (SEM) and cryogenic transmission electron microscopy (Cryo-TEM). BPs were analyzed by gas chromatography coupled with tandem mass spectrometry (GC-MS/MS). Our results indicate that some organisms may have the ability to remove a specific pollutant with high efficiency. P. tricornutum in axenic culture and in mixed culture removed almost all (more than 99%) of BPC2. Notable differences in the removal of 8 out of 18 BPs between the axenic, mixed and bacterial cultures were found. The overall removals of BPs in axenic P. tricornutum, mixed and bacterial cultures were 11%, 18% and 10%, respectively. Finding the respective organisms and creating microbe societies seems to be key for the improvement of wastewater treatment. As a possible mediating factor, numerous small cellular particles from all three cultures were detected by electron microscopy. Further research on the mechanisms of interspecies communication is needed to advance the understanding of microbial communities at the nano-level.


Assuntos
Diatomáceas , Microalgas , Rhodospirillaceae , Bactérias/genética , Meios de Cultivo Condicionados , Diatomáceas/genética , Cromatografia Gasosa-Espectrometria de Massas , RNA Ribossômico 16S/genética , Espectrometria de Massas em Tandem
9.
Biosensors (Basel) ; 12(3)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35323430

RESUMO

Humans are frequently exposed to environmental hepatotoxins, which can lead to liver failure. Biosensors may be the best candidate for the detection of hepatotoxins because of their high sensitivity and specificity, convenience, time-saving, low cost, and extremely low detection limit. To investigate suitability of HepG2 cells for biosensor use, different methods of adhesion on stainless steel surfaces were investigated, with three groups of experiments performed in vitro. Cytotoxicity assays, which include the resazurin assay, the neutral red assay (NR), and the Coomassie Brilliant Blue (CBB) assay, were used to determine the viability of HepG2 cells exposed to various concentrations of aflatoxin B1 (AFB1) and isoniazid (INH) in parallel. The viability of the HepG2 cells on the stainless steel surface was quantitatively and qualitatively examined with different microscopy techniques. A simple cell-based electrochemical biosensor was developed by evaluating the viability of the HepG2 cells on the stainless steel surface when exposed to various concentrations of AFB1 and INH by using electrochemical impedance spectroscopy (EIS). The results showed that HepG2 cells can adhere to the metal surface and could be used as part of the biosensor to determine simple hepatotoxic samples.


Assuntos
Técnicas Biossensoriais , Aço Inoxidável , Técnicas Biossensoriais/métodos , Espectroscopia Dielétrica , Eletrodos , Células Hep G2 , Humanos , Aço Inoxidável/química
10.
Platelets ; 33(4): 592-602, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34384320

RESUMO

In order to prepare optimal platelet and extracellular vesicle (EV)-rich plasma for the treatment of chronic temporal bone inflammation, we studied effects of centrifugation parameters on redistribution of blood constituents in blood samples of 23 patients and 20 volunteers with no record of disease. Concentrations of blood cells and EVs were measured by flow cytometry. Sample content was inspected by scanning electron microscopy. A mathematical model was constructed to interpret the experimental results. The observed enrichment of plasma in platelets and EVs after a single spin of blood depended on the erythrocyte sedimentation rate, thereby indicating the presence of a flow of plasma that carried platelets and EVs in the direction opposite to settling of erythrocytes. Prolonged handling time correlated with the decrease of concentration of platelets and larger EVs in platelet and EV-rich plasma (PVRP), R = -0.538, p = 0.003, indicating cell fragmentation during the processing of samples. In further centrifugation of the obtained plasma, platelet and EV enrichment depended on the average distance of the sample from the centrifuge rotor axis. Based on the agreement of the model predictions with observations, we propose the centrifugation protocol optimal for platelet and EV enrichment and recovery in an individual sample, adjusted to the dimensions of the centrifuge rotor, volume of blood and erythrocyte sedimentation rate.[Figure: see text].


Assuntos
Plaquetas , Vesículas Extracelulares , Eritrócitos , Citometria de Fluxo/métodos , Humanos , Plasma
11.
Int J Mol Sci ; 22(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34884574

RESUMO

Extracellular vesicles (EVs) are gaining increasing amounts of attention due to their potential use in diagnostics and therapy, but the poor reproducibility of the studies that have been conducted on these structures hinders their breakthrough into routine practice. We believe that a better understanding of EVs stability and methods to control their integrity are the key to resolving this issue. In this work, erythrocyte EVs (hbEVs) were isolated by centrifugation from suspensions of human erythrocytes that had been aged in vitro. The isolate was characterised by scanning (SEM) and cryo-transmission electron microscopy (cryo-TEM), flow cytometry (FCM), dynamic/static light scattering (LS), protein electrophoresis, and UV-V spectrometry. The hbEVs were exposed to various conditions (pH (4-10), osmolarity (50-1000 mOsm/L), temperature (15-60 °C), and surfactant Triton X-100 (10-500 µM)). Their stability was evaluated by LS by considering the hydrodynamic radius (Rh), intensity of scattered light (I), and the shape parameter (ρ). The morphology of the hbEVs that had been stored in phosphate-buffered saline with citrate (PBS-citrate) at 4 °C remained consistent for more than 6 months. A change in the media properties (50-1000 mOsm/L, pH 4-10) had no significant effect on the Rh (=100-130 nm). At pH values below 6 and above 8, at temperatures above 45 °C, and in the presence of Triton X-100, hbEVs degradation was indicated by a decrease in I of more than 20%. Due to the simple preparation, homogeneous morphology, and stability of hbEVs under a wide range of conditions, they are considered to be a suitable option for EV reference material.


Assuntos
Difusão Dinâmica da Luz/métodos , Eritrócitos/metabolismo , Vesículas Extracelulares/metabolismo , Microscopia Eletrônica/métodos , Eritrócitos/ultraestrutura , Vesículas Extracelulares/ultraestrutura , Humanos
12.
Nanomaterials (Basel) ; 11(8)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34443753

RESUMO

Plant-derived nanovesicles (NVs) have attracted interest due to their anti-inflammatory, anticancer and antioxidative properties and their efficient uptake by human intestinal epithelial cells. Previously we showed that tomato (Solanum lycopersicum L.) fruit is one of the interesting plant resources from which NVs can be obtained at a high yield. In the course of the isolation of NVs from different batches of tomatoes, using the established differential ultracentrifugation or size-exclusion chromatography methods, we occasionally observed the co-isolation of viral particles. Density gradient ultracentrifugation (gUC), using sucrose or iodixanol gradient materials, turned out to be efficient in the separation of NVs from the viral particles. We applied cryogenic transmission electron microscopy (cryo-TEM), scanning electron microscopy (SEM) for the morphological assessment and LC-MS/MS-based proteomics for the protein identification of the gradient fractions. Cryo-TEM showed that a low-density gUC fraction was enriched in membrane-enclosed NVs, while the high-density fractions were rich in rod-shaped objects. Mass spectrometry-based proteomic analysis identified capsid proteins of tomato brown rugose fruit virus, tomato mosaic virus and tomato mottle mosaic virus. In another batch of tomatoes, we isolated tomato spotted wilt virus, potato virus Y and southern tomato virus in the vesicle sample. Our results show the frequent co-isolation of plant viruses with NVs and the utility of the combination of cryo-TEM, SEM and proteomics in the detection of possible viral contamination.

13.
Nanomaterials (Basel) ; 11(2)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673220

RESUMO

Nanoparticles (NPs) show various properties depending on their composition, size, and surface coating, which shape their interactions with biological systems. In particular, NPs have been shown to interact with immune cells, that represent a sensitive surveillance system of external and internal stimuli. In this light, in vitro models represent useful tools for investigating nano-bio-interactions in immune cells of different organisms, including invertebrates. In this work, the effects of selected types of NPs with different core composition, size and functionalization (custom-made PVP-AuNP and commercial nanopolystyrenes PS-NH2 and PS-COOH) were investigated in the hemocytes of the marine bivalve Mytilus galloprovincialis. The role of exposure medium was evaluated using either artificial seawater (ASW) or hemolymph serum (HS). Hemocyte morphology was investigated by scanning electron microscopy (SEM) and different functional parameters (lysosomal membrane stability, phagocytosis, and lysozyme release) were evaluated. The results show distinct morphological and functional changes induced in mussel hemocytes depending on the NP type and exposure medium. Mussel hemocytes may represent a powerful alternative in vitro model for a rapid pre-screening strategy for NPs, whose utilization will contribute to the understanding of the possible impact of environmental exposure to NPs in marine invertebrates.

14.
Int J Nanomedicine ; 16: 443-456, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33505159

RESUMO

INTRODUCTION: Cellular nanovesicles (CNVs), that are shed from cells, have been recognized as promising indicators of health status. We analyzed the effect of long-distance running on concentration of CNVs, along with some standard blood parameters, in 27 athletes two days before and >15 hours after physical effort. METHODS: CNVs were isolated by repetitive centrifugation and washing of samples, and assessed by flow cytometry. Cholinesterase (ChE) and glutathione S-transferase (GST) activity were measured spectrophotometrically. Interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α) concentrations were measured using enzyme-linked immunosorbent assay (ELISA). C-reactive protein (CRP) was measured with immunoturbidimetric determination and lipidogram parameters were measured by enzymatic colorimetric assay. Flow cytometry was used for blood cell count and mean platelet volume (MPV) measurement. RESULTS: More than 15 hours after physical effort a decrease was found in CNVs' concentration in isolates from blood (46%; p<0.05), in ChE activity in whole blood (47%; p<0.001), in plasma (34%; p<0.01), and in erythrocyte suspension (54%; p<0.001), as well as in GST activity in erythrocyte suspension (16%; p<0.01) and in IL-6 concentration in plasma (63%; p<0.05). We found no change in GST activity in plasma and in TNF-α concentration in plasma. Correlations (>0.8; p<0.001) between CNVs' concentration and ChE activity, and GST activity, respectively, in erythrocyte suspension were found. CONCLUSION: We found that >15 hours post-physical effort, CNVs' concentration was below the initial value, concomitant with other measured parameters: ChE and GST activity as well as IL-6 concentration, indicating a favorable effect of physical effort on health status. CNVs' concentration and ChE activity in isolates from peripheral blood proved to have potential as indicators of the response of the human body to inflammation after physical effort. Physical activity should be considered as an important factor in preparation of subjects for blood sampling in procedures focusing on CNV-containing diagnostic and therapeutic compounds.


Assuntos
Atletas , Sangue/metabolismo , Corrida de Maratona , Nanopartículas/química , Adulto , Contagem de Células Sanguíneas , Proteína C-Reativa/análise , Eritrócitos/metabolismo , Feminino , Citometria de Fluxo , Humanos , Interleucina-6/sangue , Lipídeos/química , Masculino , Pessoa de Meia-Idade , Esforço Físico/fisiologia , Fator de Necrose Tumoral alfa/sangue , Adulto Jovem
15.
ACS Appl Mater Interfaces ; 12(21): 24419-24431, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32352743

RESUMO

Functionalized interfaces enhancing phase-change processes have immense applicability in thermal management. Here, a methodology for fabrication of surfaces enabling extreme boiling heat transfer performance is demonstrated, combining direct nanosecond laser texturing and chemical vapor deposition of a hydrophobic fluorinated silane. Multiple strategies of laser texturing are explored on aluminum with subsequent nanoscale hydrophobization. Both superhydrophilic and superhydrophobic surfaces with laser-engineered microcavities exhibit significant enhancement of the pool boiling heat transfer. Surfaces with superhydrophobic microcavities allow for enhancements of a heat transfer coefficient of over 500%. Larger microcavities with a mean diameter of 4.2 µm, achieved using equidistant laser scanning separation, induce an early transition into the favorable nucleate boiling regime, while smaller microcavities with a mean diameter of 2.8 µm, achieved using variable separation, provide superior performance at high heat fluxes. The enhanced boiling performance confirms that the Wenzel wetting regime is possible during boiling on apparently superhydrophobic surfaces. A notable critical heat flux enhancement is demonstrated on superhydrophobic surfaces with an engineered microstructure showing definitively the importance and concomitant effect of both the surface wettability and topography for enhanced boiling. The fast, low-cost, and repeatable fabrication process has great potential for advanced thermal management applications.

16.
Ultrason Sonochem ; 67: 105126, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32311571

RESUMO

The interaction between liquid flow and solid boundary can result in cavitation formation when the local pressure drops below vaporization threshold. The cavitation dynamics does not depend only on basic geometry, but also on surface roughness, chemistry and wettability. From application point of view, controlling cavitation in fluid flows by surface functionalization is of great importance to avoid the unwanted effects of hydrodynamic cavitation (erosion, noise and vibrations). However, it could be also used for intensification of various physical and chemical processes. In this work, the surfaces of 10-mm stainless steel cylinders are laser textured in order to demonstrate how hydrodynamic cavitation behavior can be controlled by surface modification. The surface properties are modified by using a nanosecond (10-28 ns) fiber laser (wavelength of 1060 nm). In such a way, surfaces with different topographies and wettability were produced and tested in a cavitation tunnel at different cavitation numbers (1.0-2.6). Cavitation characteristics behind functionalized cylindrical surfaces were monitored simultaneously by high-speed visualization (20,000 fps) and high frequency pressure transducers. The results clearly show that cavitation characteristics differ significantly between different micro-structured surfaces. On some surfaces incipient cavitation is delayed and cavitation extent decreased in comparison with the reference - a highly polished cylinder. It is also shown that the increased surface wettability (i.e., hydrophilicity) delays the incipient cavitation.

17.
J Prosthet Dent ; 123(3): 491-499, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31307799

RESUMO

STATEMENT OF PROBLEM: Computer-aided design and computer-aided manufacturing (CAD-CAM) technologies have provided alternatives to lost-wax casting for the fabrication of titanium frameworks in metal-ceramic fixed dental prostheses (FDPs). The findings on varying metal surface characteristics resulting from application of different fabrication technologies indicate a need to reevaluate the traditional titanium surface conditioning protocols. PURPOSE: The purpose of this in vitro study was to investigate the effects of surface airborne-particle abrasion (APA) and bonding agent application on the porcelain bond to titanium dental alloys fabricated by subtractive computer numerical controlled (CNC) milling and by additive selective laser melting (SLM) methods. MATERIAL AND METHODS: Eight groups of Ti-6Al-4V substrates (n=11) were fabricated-half of them by CNC milling and half by SLM. The groups represented a fully crossed experimental protocol of APA with 110-µm Al2O3 particles under a pressure of 0.2 MPa (intact-controls or abraded) and bonding agent application (with or without bonding agent) for the CNC milled and SLM titanium substrates. Ultra-low fusing dental porcelain was applied to the differently prepared titanium substrates, and the titanium-ceramic bond strength was determined by a 3-point bend test according to the International Organization for Standardization (ISO) standard 9693-1:2012. Average profile roughness (Ra) values were obtained for intact and APA titanium substrates fabricated by CNC milling and by SLM. Representative titanium-ceramic interfaces were analyzed by using a field emission scanning electron microscope (FE-SEM) and energy dispersive spectroscopy (EDS). Titanium-ceramic bond strength data were analyzed statistically by 3-way ANOVA and the Tukey HSD test. Ra data were analyzed by 2-way ANOVA, followed by regression analyses (α=.05). RESULTS: The method applied for the digital fabrication of titanium (either subtractive CNC milling or additive SLM) did not affect the titanium-ceramic bond (P=.247). APA (P<.001), as well as the application of a bonding agent (P<.001), increased the titanium-ceramic bond strength. When these 2 procedures were combined, the porcelain bond strength to CNC milled titanium was 37.3 ±4.1 MPa and that to SLM titanium was 36.7 ±4.9 MPa. APA increased the surface roughness of CNC milled titanium (P=.002) but decreased the roughness of the SLM substrates (P<.001). CONCLUSIONS: A protocol comprising APA and application of a bonding agent ensures the highest porcelain bond strength to both CNC milled and SLM titanium, with the obtained values being well above the minimal value for metal-ceramic systems as specified by ISO 9693-1:2012.


Assuntos
Colagem Dentária , Porcelana Dentária , Ligas Dentárias , Teste de Materiais , Ligas Metalo-Cerâmicas , Microscopia Eletrônica de Varredura , Propriedades de Superfície , Titânio
18.
Materials (Basel) ; 12(11)2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31212615

RESUMO

Epoxy/TiO2/epoxy and epoxy/FAS-TiO2/epoxy coatings were applied to the surface of AISI 316L stainless steel with the aim to improve the biocompatibility and antibacterial properties. Contact-angle measurements were used to evaluate the wetting properties of the epoxy, epoxy/TiO2/epoxy and epoxy/FAS-TiO2/epoxy coatings. The epoxy and epoxy/TiO2/epoxy coatings were hydrophilic compared with the strongly hydrophobic epoxy/FAS-TiO2/epoxy coating. The average surface roughness (Sa) of the epoxy/FAS-TiO2/epoxy coating was higher than that of the epoxy/TiO2/epoxy coating due to the formation of agglomerates. The biocompatibility evaluation revealed that the cell attachment was significantly higher on the epoxy/FAS-TiO2/epoxy and epoxy/TiO2/epoxy coatings compared with the pure epoxy coating. We also observed improved antibacterial properties for the epoxy coatings with the addition of both TiO2 and FAS-TiO2 nanoparticles.

19.
Materials (Basel) ; 11(11)2018 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-30423878

RESUMO

Controlling the surface wettability represents an important challenge in the field of surface functionalization. Here, the wettability of a stainless-steel surface is modified by 30-ns pulses of a Nd:YAG marking laser (λ = 1064 nm) with peak fluences within the range 3.3⁻25.1 J cm-2. The short- (40 days), intermediate- (100 days) and long-term (1 year) superhydrophilic-to-(super)hydrophobic transition of the laser-textured surfaces exposed to the atmospheric air is examined by evaluating its wettability in the context of the following parameters: (i) pulse fluence; (ii) scan line separation; (iii) focal position and (iv) wetting period due to contact angle measurements. The results show that using solely a short-term evaluation can lead to wrong conclusions and that the faster development of the hydrophobicity immediately after laser texturing usually leads to lower final contact angle and vice versa, the slower this transition is, the more superhydrophobic the surface is expected to become (possibly even with self-cleaning ability). Depending on laser fluence, the laser-textured surfaces can develop stable or unstable hydrophobicity. Stable hydrophobicity is achieved, if the threshold fluence of 12 J cm-2 is exceeded. We show that by nanosecond-laser texturing a lotus-leaf-like surface with a contact angle above 150° and roll-off angle below 5° can be achieved.

20.
Ecotoxicol Environ Saf ; 152: 61-66, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29407783

RESUMO

One of the most widely used aquatic standarized tests for the toxicity screening of chemicals is the acute toxicity test with the freshwater crustacean Daphnia magna, which has also been applied in the toxicity screening of manufactured nanoparticles (NPs). However, in the case of non-soluble NPs most of the results of this test have showed no effect. The aim of the work presented here was to modify the standardized test by the least possible extent to make it more sensitive for non-soluble particles. The standard acute immobilisation assay with daphnids was modified by prolonging the exposure period and by measuring additional endpoints. Daphnids were exposed to TiO2 NPs in a standard acute test (48h of exposure), a standard acute test (48h of exposure) followed by 24h recovery period in clean medium or a prolonged exposure in the NPs solutions totaling 72h. Together with immobility, the adsorption of NPs to body surfaces was also observed as an alternative measure of the NPs effects. Our results showed almost no effect of TiO2 NPs on D. magna after the 48h standard acute test, while immobility was increased when the exposure period to TiO2 NPs was prolonged from 48h to 72h. Even when daphnids were transferred to clean medium for additional 24h after 48h of exposure to TiO2 NPs the immobility increased. We conclude that by transferring the daphnids to clean medium at the end of the 48h exposure to TiO2 NPs, the delayed effects of the tested material can be seen. This methodological step could improve the sensitivity of D. magna test as a model in nanomaterial environmental risk assessment.


Assuntos
Daphnia/efeitos dos fármacos , Nanopartículas/toxicidade , Poluentes Químicos da Água/toxicidade , Óxido de Zinco/toxicidade , Adsorção , Animais , Bioensaio , Água Doce/química , Nanopartículas/química , Solubilidade , Propriedades de Superfície , Fatores de Tempo , Testes de Toxicidade Aguda/métodos , Poluentes Químicos da Água/química , Óxido de Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...