Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4232, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454110

RESUMO

Experiences have been shown to modulate behavior and physiology of future generations in some contexts, but there is limited evidence for inheritance of associative memory in different species. Here, we trained C. elegans nematodes to associate an attractive odorant with stressful starvation conditions and revealed that this associative memory was transmitted to the F1 progeny who showed odor-evoked avoidance behavior. Moreover, the F1 and the F2 descendants of trained animals exhibited odor-evoked cellular stress responses, manifested by the translocation of DAF-16/FOXO to cells' nuclei. Sperm, but not oocytes, transmitted these odor-evoked cellular stress responses which involved H3K9 and H3K36 methylations, the small RNA pathway machinery, and intact neuropeptide secretion. Activation of a single chemosensory neuron sufficed to induce a serotonin-mediated systemic stress response in both the parental trained generation and in its progeny. Moreover, inheritance of the cellular stress responses increased survival chances of the progeny as exposure to the training odorant allowed the animals to prepare in advance for an impending adversity. These findings suggest that in C. elegans associative memories and cellular changes may be transferred across generations.


Assuntos
Proteínas de Caenorhabditis elegans , Neuropeptídeos , Animais , Masculino , Caenorhabditis elegans/metabolismo , Sêmen/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Neuropeptídeos/metabolismo , Núcleo Celular/metabolismo
2.
Curr Biol ; 29(10): 1573-1583.e4, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-31056393

RESUMO

Organisms' capacity to anticipate future conditions is key for survival. Associative memories are instrumental for learning from past experiences, yet little is known about the processes that follow memory retrieval and their potential advantage in preparing for impending developments. Here, using C. elegans nematodes, we demonstrate that odor-evoked retrieval of aversive memories induces rapid and protective stress responses, which increase animal survival prospects when facing imminent adversities. The underlying mechanism relies on two sensory neurons: one is necessary during the learning period, and the other is necessary and sufficient for memory retrieval. Downstream of memory reactivation, serotonin secreted from two head neurons mediates the systemic stress response. Thus, evoking stressful memories, stored within individual sensory neurons, allows animals to anticipate upcoming dire conditions and provides a head start to initiate rapid and protective responses that ultimately increase animal fitness.


Assuntos
Caenorhabditis elegans/fisiologia , Memória , Odorantes , Células Receptoras Sensoriais/fisiologia , Adaptação Fisiológica , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...