Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 313: 137526, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36513194

RESUMO

Biogenic manganese (Mn) oxides occur ubiquitously in the environment including the uranium (U) mill tailings at the Ningyo-toge U mine in Okayama, Japan, being important in the sequestration of radioactive radium. To understand the nanoscale processes in Mn oxides formation at the U mill tailings site, Mn2+ absorption by a basidiomycete fungus, Coprinopsis urticicola, isolated from Ningyo-toge mine water samples, was investigated in the laboratory under controlled conditions utilizing electron microscopy, synchrotron-based X-ray analysis, and fluorescence microscopy with a molecular pH probe. The fungus' growth was first investigated in an agar-solidified medium supplemented with 1.0 mmol/L Mn2+, and Cu2+ (0-200 µM), Zn2+ (0-200 µM), or diphenyleneiodonium (DPI) chloride (0-100 µM) at 25 °C. The results revealed that Zn2+ has no significant effects on Mn oxide formation, whereas Cu2+ and DPI significantly inhibit both fungal growth and Mn oxidation, indicating superoxide-mediated Mn oxidation. Indeed, nitroblue tetrazolium and diaminobenzidine assays on the growing fungus revealed the production of superoxide and peroxide. During the interaction of Mn2+ with the fungus in solution medium at the initial pH of 5.67, a small fraction of Mn2+ infiltrated the fungal hyphae within 8 h, forming a few tens of nm-sized concentrates of soluble Mn2+ in the intracellular pH of ∼6.5. After 1 day of incubation, Mn oxides began to precipitate on the hyphae, which were characterized as fibrous nanocrystals with a hexagonal birnessite-structure, these forming spherical aggregates with a diameter of ∼1.5 µm. These nanoscale processes associated with the fungal species derived from the Ningyo-toge mine area provide additional insights into the existing mechanisms of Mn oxidation by filamentous fungi at other U mill tailings sites under circumneutral pH conditions. Such processes add to the class of reactions important to the sequestration of toxic elements.


Assuntos
Basidiomycota , Superóxidos , Óxidos/química , Compostos de Manganês/química , Oxirredução , Fungos
2.
J Hazard Mater ; 445: 130482, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36473256

RESUMO

Quantitative characteristics and sizes of nanoparticles (NPs) in coal fly ash (CFA) produced in coal-fired power plants as a function of coal type and plant design will help reveal the NP emission likelihood and their environmental implications. However, little is known about how combustion conditions and types of coal regulate the NP abundance in CFAs. In this study, based on single particle (SP)-ICP-MS technology, particle number concentrations (PNCs) and sizes of Fe- and Ti-containing NPs in CFAs were determined for samples collected from power plants of different designs and burning different types of coal. The PNCs of Fe- and Ti-containing NPs in all CFAs measured were in the range of 1.3 × 107 - 3.4 × 108 and 6.8 × 106 - 2.2 × 108 particles/mg, with the average particle sizes of 111 nm and 87 nm, respectively. The highest Fe-NP PNCs likely relate to the highest contents of Fe and pyrite in the feed coal. In addition, high TOC in CFAs are associated with metal-containing NPs, resulting in elevated abundances of these NPs with relatively large sizes. Moreover, elevated PNCs of NPs were found in CFAs produced by coal-fired power plants burning low-rank coals and with small installed capacity (especially those under 100-MW units). Compared to cyclone filters, ESPs and FFs with higher removal efficiency typically retain more Fe-/Ti- containing NPs with smaller sizes. Based on a structural equation (SE) model, raw coal properties (coal rank and Fe/Ti content), boiler types, and efficiency of particulate emission control devices likely indirectly affect PNCs of Fe- and Ti-containing NPs by influencing TOC contents and their corresponding metal concentrations of CFAs. This study provides the first analytic and comprehensive information concerning the direct and indirect regulating factors on NPs in various CFAs.

3.
Nat Nanotechnol ; 17(12): 1342-1351, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36443601

RESUMO

Artificial ocean fertilization (AOF) aims to safely stimulate phytoplankton growth in the ocean and enhance carbon sequestration. AOF carbon sequestration efficiency appears lower than natural ocean fertilization processes due mainly to the low bioavailability of added nutrients, along with low export rates of AOF-produced biomass to the deep ocean. Here we explore the potential application of engineered nanoparticles (ENPs) to overcome these issues. Data from 123 studies show that some ENPs may enhance phytoplankton growth at concentrations below those likely to be toxic in marine ecosystems. ENPs may also increase bloom lifetime, boost phytoplankton aggregation and carbon export, and address secondary limiting factors in AOF. Life-cycle assessment and cost analyses suggest that net CO2 capture is possible for iron, SiO2 and Al2O3 ENPs with costs of 2-5 times that of conventional AOF, whereas boosting AOF efficiency by ENPs should substantially enhance net CO2 capture and reduce these costs. Therefore, ENP-based AOF can be an important component of the mitigation strategy to limit global warming.


Assuntos
Dióxido de Carbono , Nanopartículas , Ecossistema , Dióxido de Silício , Fitoplâncton , Oceanos e Mares , Fertilização
4.
Biology (Basel) ; 11(9)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36138783

RESUMO

Exceptionally preserved fossils retain soft tissues and often the biomolecules that were present in an animal during its life. The majority of terrestrial vertebrate fossils are not traditionally considered exceptionally preserved, with fossils falling on a spectrum ranging from very well-preserved to poorly preserved when considering completeness, morphology and the presence of microstructures. Within this variability of anatomical preservation, high-quality macro-scale preservation (e.g., articulated skeletons) may not be reflected in molecular-scale preservation (i.e., biomolecules). Excavation of the Hayden Quarry (HQ; Chinle Formation, Ghost Ranch, NM, USA) has resulted in the recovery of thousands of fossilized vertebrate specimens. This has contributed greatly to our knowledge of early dinosaur evolution and paleoenvironmental conditions during the Late Triassic Period (~212 Ma). The number of specimens, completeness of skeletons and fidelity of osteohistological microstructures preserved in the bone all demonstrate the remarkable quality of the fossils preserved at this locality. Because the Hayden Quarry is an excellent example of good preservation in a fluvial environment, we have tested different fossil types (i.e., bone, tooth, coprolite) to examine the molecular preservation and overall taphonomy of the HQ to determine how different scales of preservation vary within a single locality. We used multiple high-resolution mass spectrometry techniques (TOF-SIMS, GC-MS, FT-ICR MS) to compare the fossils to unaltered bone from extant vertebrates, experimentally matured bone, and younger dinosaurian skeletal material from other fluvial environments. FT-ICR MS provides detailed molecular information about complex mixtures, and TOF-SIMS has high elemental spatial sensitivity. Using these techniques, we did not find convincing evidence of a molecular signal that can be confidently interpreted as endogenous, indicating that very good macro- and microscale preservation are not necessarily good predictors of molecular preservation.

5.
Sci Rep ; 12(1): 3407, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35232970

RESUMO

Nutrient foraging by fungi weathers rocks by mechanical and biochemical processes. Distinguishing fungal-driven transformation from abiotic mechanisms in soil remains a challenge due to complexities within natural field environments. We examined the role of fungal hyphae in the incipient weathering of granulated basalt from a three-year field experiment in a mixed hardwood-pine forest (S. Carolina) to identify alteration at the nanometer to micron scales based on microscopy-tomography analyses. Investigations of fungal-grain contacts revealed (i) a hypha-biofilm-basaltic glass interface coinciding with titanomagnetite inclusions exposed on the grain surface and embedded in the glass matrix and (ii) native dendritic and subhedral titanomagnetite inclusions in the upper 1-2 µm of the grain surface that spanned the length of the fungal-grain interface. We provide evidence of submicron basaltic glass dissolution occurring at a fungal-grain contact in a soil field setting. An example of how fungal-mediated weathering can be distinguished from abiotic mechanisms in the field was demonstrated by observing hyphal selective occupation and hydrolysis of glass-titanomagnetite surfaces. We hypothesize that the fungi were drawn to basaltic glass-titanomagnetite boundaries given that titanomagnetite exposed on or very near grain surfaces represents a source of iron to microbes. Furthermore, glass is energetically favorable to weathering in the presence of titanomagnetite. Our observations demonstrate that fungi interact with and transform basaltic substrates over a three-year time scale in field environments, which is central to understanding the rates and pathways of biogeochemical reactions related to nuclear waste disposal, geologic carbon storage, nutrient cycling, cultural artifact preservation, and soil-formation processes.


Assuntos
Hifas , Silicatos , Florestas , Hifas/metabolismo , Silicatos/metabolismo , Solo
6.
Environ Sci Technol ; 55(10): 6644-6654, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33969690

RESUMO

Characterization of nanoparticles (NPs) in coal fly ashes (CFAs) is critical for better understanding the potential health-related risks resulting from coal combustion. Based on single-particle (SP)-inductively coupled plasma mass spectrometry (ICP-MS) coupled with transmission electron microscopy techniques, this study is the first to determine the concentrations and sizes of metal-containing NPs in low-rank coal-derived fly ashes. Despite only comprising a minor component of the studied CFAs by mass, NPs were the dominant fraction by particle number. Fe- and Ti-containing NPs were identified as the dominant NPs with their particle number concentration ranging from 2.5 × 107 to 2.5 × 108 particles/mg. In addition, the differences of Fe-/Ti-containing NPs in various CFAs were regulated by the coalification degree of feed coals and combustion conditions of all of the low-rank CFAs tested. In the cases where these NPs in CFAs become airborne and are inhaled, they can be taken up in pulmonary interstitial fluids. This study shows that in Gamble's solution (a lung fluid simulant), 51-87% of Fe and 63-89% of Ti (ratio of the mass of Fe-/Ti-containing NPs to the total mass of Fe/Ti) exist in the NP form and remain suspended in pulmonary fluid simulants. These NPs are bioavailable and may induce lung tissue damage.


Assuntos
Cinza de Carvão , Nanopartículas Metálicas , China , Carvão Mineral , Cinza de Carvão/análise , Humanos , Pulmão
7.
Environ Sci Technol ; 54(9): 5598-5607, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32243750

RESUMO

Cobalt sulfide precipitates, key phases in the natural biogeochemistry of cobalt and in relevant remediation and resource recovery processes, are poorly defined under low-temperature aqueous conditions. Here, we systematically studied Co (Fe) sulfides precipitated and aged in environmentally relevant solutions, defined by different combinations of pH, initial cobalt to iron ratios ([Co]aq/[Fe]aq), with/without S0, and the presence/absence of sulfate-reducing bacteria. The initial abiogenic precipitates were composed exclusively of amorphous Co sulfide nanoparticles (CoS·xH2O) that were stable in anoxic solution for 2 months, with estimated log K* values 1-5 orders of magnitude higher than that previously reported for Co sulfides. The addition of S0, in combination with acidic pH and elevated temperature (60 °C), resulted in recrystallization of the amorphous precipitates into nanocrystalline jaipurite (hexagonal CoS) within 1 month. In the presence of Fe(II)aq, the abiogenic precipitates were composed of more crystalline Co sulfides and/or Co-rich mackinawite, the exact phase being dependent on the [Co]aq/[Fe]aq value. The biogenic precipitates displayed higher crystallinity for Co sulfides (up to the formation of nanocrystalline cobalt pentlandite, Co9S8) and lower crystallinity for Co-rich mackinawite, suggestive of mineral-specific bacterial interaction. The revealed precipitation and transformation pathways of Co (Fe) sulfides in this study allows for a better constraint of Co biogeochemistry in various natural and engineered environments.


Assuntos
Cobalto , Nanopartículas , Sulfetos , Temperatura
8.
Environ Sci Technol ; 54(3): 1533-1544, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31951397

RESUMO

Reliable predictions of the environmental fate and risk of engineered nanomaterials (ENMs) require a better understanding of ENM reactivity in complex, biologically active systems for chronic low-concentration exposure scenarios. Here, simulated freshwater wetland mesocosms were dosed with ENMs to assess how their reactivity and seasonal changes in environmental parameters influence ENM fate in aquatic systems. Copper-based ENMs (Kocide), known to dissolve in water, and gold nanoparticles (AuNPs), stable against dissolution in the absence of specific ligands, were added weekly to mesocosm waters for 9 months. Metal accumulation and speciation changes in the different environmental compartments were assessed over time. Copper from Kocide rapidly dissolved likely associating with organic matter in the water column, transported to terrestrial soils and deeper sediment where it became associated with organic or sulfide phases. In contrast, Au accumulated on/in the macrophytes where it oxidized and transferred over time to surficial sediment. A dynamic seasonal accumulation and metal redox cycling were found between the macrophyte and the surficial sediment for AuNPs. These results demonstrate the need for experimental quantification of how the biological and chemical complexity of the environment, combined with their seasonal variations, drive the fate of metastable ENMs.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Cobre , Água Doce , Ouro , Estações do Ano , Áreas Alagadas
9.
Front Immunol ; 10: 2714, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849940

RESUMO

Coal is one of the most abundant and economic sources for global energy production. However, the burning of coal is widely recognized as a significant contributor to atmospheric particulate matter linked to deleterious respiratory impacts. Recently, we have discovered that burning coal generates large quantities of otherwise rare Magnéli phase titanium suboxides from TiO2 minerals naturally present in coal. These nanoscale Magnéli phases are biologically active without photostimulation and toxic to airway epithelial cells in vitro and to zebrafish in vivo. Here, we sought to determine the clinical and physiological impact of pulmonary exposure to Magnéli phases using mice as mammalian model organisms. Mice were exposed to the most frequently found Magnéli phases, Ti6O11, at 100 parts per million (ppm) via intratracheal administration. Local and systemic titanium concentrations, lung pathology, and changes in airway mechanics were assessed. Additional mechanistic studies were conducted with primary bone marrow derived macrophages. Our results indicate that macrophages are the cell type most impacted by exposure to these nanoscale particles. Following phagocytosis, macrophages fail to properly eliminate Magnéli phases, resulting in increased oxidative stress, mitochondrial dysfunction, and ultimately apoptosis. In the lungs, these nanoparticles become concentrated in macrophages, resulting in a feedback loop of reactive oxygen species production, cell death, and the initiation of gene expression profiles consistent with lung injury within 6 weeks of exposure. Chronic exposure and accumulation of Magnéli phases ultimately results in significantly reduced lung function impacting airway resistance, compliance, and elastance. Together, these studies demonstrate that Magnéli phases are toxic in the mammalian airway and are likely a significant nanoscale environmental pollutant, especially in geographic regions where coal combustion is a major contributor to atmospheric particulate matter.


Assuntos
Exposição Ambiental , Pulmão/efeitos dos fármacos , Pulmão/patologia , Macrófagos/metabolismo , Titânio/efeitos adversos , Animais , Apoptose/genética , Apoptose/imunologia , Biomarcadores , Citocinas/metabolismo , Citotoxicidade Imunológica , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Humanos , L-Lactato Desidrogenase/metabolismo , Pulmão/metabolismo , Pulmão/fisiopatologia , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Potencial da Membrana Mitocondrial , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Testes de Função Respiratória , Transdução de Sinais
10.
Nat Commun ; 10(1): 5179, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31729377

RESUMO

Deciphering the origin, age, and composition of deep marine organic carbon remains a challenge in understanding the dynamics of the marine carbon cycle. In particular, the composition of aged organic carbon and what allows its persistence in the deep ocean and in sediment is unresolved. Here, we observe that both high and low temperature hydrothermal vents at the 9° 50' N; 104° 17.5 W East Pacific Rise (EPR) vent field are a source for (sub)micron-sized graphite particles. We demonstrate that commonly applied analytical techniques for quantification of organic carbon detect graphite. These analyses thereby classify graphite as either dissolved or particulate organic carbon, depending on the particle size and filtration method, and overlook its relevance as a carbon source to the deep ocean. Settling velocity calculations indicate the potential for these (sub)micron particles to become entrained in the buoyant plume and distributed far from the vent fields. Thus, our observations provide direct evidence for hydrothermal vents acting as a source of old carbon to the deep ocean.

11.
Proc Natl Acad Sci U S A ; 116(20): 9741-9746, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31010932

RESUMO

Sunlight drives photosynthesis and associated biological processes, and also influences inorganic processes that shape Earth's climate and geochemistry. Bacterial solar-to-chemical energy conversion on this planet evolved to use an intricate intracellular process of phototrophy. However, a natural nonbiological counterpart to phototrophy has yet to be recognized. In this work, we reveal the inherent "phototrophic-like" behavior of vast expanses of natural rock/soil surfaces from deserts, red soils, and karst environments, all of which can drive photon-to-electron conversions. Using scanning electron microscopy, transmission electron microscopy, micro-Raman spectroscopy, and X-ray absorption spectroscopy, Fe and Mn (oxyhydr)oxide-rich coatings were found in rock varnishes, as were Fe (oxyhydr)oxides on red soil surfaces and minute amounts of Mn oxides on karst rock surfaces. By directly fabricating a photoelectric detection device on the thin section of a rock varnish sample, we have recorded an in situ photocurrent micromapping of the coatings, which behave as highly sensitive and stable photoelectric systems. Additional measurements of red soil and powder separated from the outermost surface of karst rocks yielded photocurrents that are also sensitive to irradiation. The prominent solar-responsive capability of the phototrophic-like rocks/soils is ascribed to the semiconducting Fe- and Mn (oxyhydr)oxide-mineral coatings. The native semiconducting Fe/Mn-rich coatings may play a role similar, in part, to photosynthetic systems and thus provide a distinctive driving force for redox (bio)geochemistry on Earth's surfaces.

12.
Science ; 363(6434)2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30923195

RESUMO

Nanomaterials are critical components in the Earth system's past, present, and future characteristics and behavior. They have been present since Earth's origin in great abundance. Life, from the earliest cells to modern humans, has evolved in intimate association with naturally occurring nanomaterials. This synergy began to shift considerably with human industrialization. Particularly since the Industrial Revolution some two-and-a-half centuries ago, incidental nanomaterials (produced unintentionally by human activity) have been continuously produced and distributed worldwide. In some areas, they now rival the amount of naturally occurring nanomaterials. In the past half-century, engineered nanomaterials have been produced in very small amounts relative to the other two types of nanomaterials, but still in large enough quantities to make them a consequential component of the planet. All nanomaterials, regardless of their origin, have distinct chemical and physical properties throughout their size range, clearly setting them apart from their macroscopic equivalents and necessitating careful study. Following major advances in experimental, computational, analytical, and field approaches, it is becoming possible to better assess and understand all types and origins of nanomaterials in the Earth system. It is also now possible to frame their immediate and long-term impact on environmental and human health at local, regional, and global scales.

13.
Geochem Trans ; 20(1): 1, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30868335

RESUMO

Mineralogical studies of contaminated soils affected by smelter emission and dust from mining activities indicate that minerals of the spinel group are one of the common hosts of metal-bearing contaminants. Spinel group minerals typically originate from high temperature processes, but an increasing number of studies indicate that metal-bearing spinel group minerals can also form under ambient Earth surface conditions in surficial soils. In this contribution to honor Donald Sparks, we show that the spinels Zn-bearing magnetite (Zn0.5Fe2.5O4) and minium (Pb3O4) form during low temperature alteration of Pb-bearing silica glass in surficial organic rich soils in proximity to a former Cu-smelter in Timmins, Ontario, Canada. The glass most likely formed during high-temperature processes and has been either emitted by the smelter or wind-blown from waste rock piles to near-by soils. The alteration of the glass by percolating pore solutions has resulted in the formation of large micrometer-size dendritic etch features and in nanometer-size dendritic alteration halos composed of nano-size prismatic crystals of Zn-rich magnetite and spherical nanoparticles of minium. Both spinel-type phases are embedded in an amorphous silica matrix which formed during the alteration of the glass at low temperature. A review on the occurrence of spinel-group minerals in smelter-affected soils or mine tailings indicates that the formation of these minerals under ambient Earth surface conditions is quite common and often results in the sequestration of contaminants such as Cu, Ni, Zn and Sb. The pedogenic spinels often occur as euhedral crystals in nano-size mineral assemblages within alteration features such as dendritic etch patterns, mineral surface coatings and mineralized organic matter. Their well-developed crystal forms indicate that (a) they have not formed during a rapid cooling process in a smelter or refinery which typically creates spherical particulate matter, and (b) they have not been part of particulate matter added via fluvial or Aeolian processes which most commonly yield anhedral morphologies. The formation of nano-size spinel-group minerals in low temperature environmental settings may lead to the long-term storage of metal(loid)s in mineral phases and their transport over vast distances via fluvial, alluvial and Aeolian processes.

14.
Environ Sci Technol ; 52(17): 9768-9776, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30067347

RESUMO

Trace metals associated with nanoparticles are known to possess reactivities that are different from their larger-size counterparts. However, the relative importance of small relative to large particles for the overall distribution and biouptake of these metals is not as well studied in complex environmental systems. Here, we have examined differences in the long term fate and transport of ceria (CeO2) nanoparticles of two different sizes (3.8 vs 185 nm), dosed weekly to freshwater wetland mesocosms over 9 months. While the majority of CeO2 particles were detected in soils and sediments at the end of nine months, there were significant differences observed in fate, distribution, and transport mechanisms between the two materials. Small nanoparticles were removed from the water column primarily through heteroaggregation with suspended solids and plants, while large nanoparticles were removed primarily by sedimentation. A greater fraction of small particles remained in the upper floc layers of sediment relative to the large particles (31% vs 7%). Cerium from the small particles were also significantly more bioavailable to aquatic plants (2% vs 0.5%), snails (44 vs 2.6 ng), and insects (8 vs 0.07 µg). Small CeO2 particles were also significantly reduced from Ce(IV) to Ce(III), while aquatic sediments were a sink for untransformed large nanoparticles. These results demonstrate that trace metals originating from nanoscale materials have much greater potential than their larger counterparts to distribute throughout multiple compartments of a complex aquatic ecosystem and contribute to the overall bioavailable pool of the metal for biouptake and trophic transfer.


Assuntos
Cério , Nanopartículas Metálicas , Nanopartículas , Animais , Ecossistema , Água Doce , Áreas Alagadas
15.
Sci Rep ; 8(1): 3648, 2018 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-29483563

RESUMO

To understand the competing effects of the components in extracellular substances (ES), polymeric substances (PS) and low-molecular-weight small substances (SS) <1 kDa derived from microorganisms, on the colloidal stability of cerium dioxide nanoparticles (CeNPs), we investigated their adsorption to sparingly soluble CeNPs at room temperature at pH 6.0. The ES was extracted from the fungus S. cerevisiae. The polypeptides and phosphates in all components preferentially adsorbed onto the CeNPs. The zeta potentials of ES + CeNPs, PS + CeNPs, and SS + CeNPs overlapped on the plot of PS itself, indicating the surface charge of the polymeric substances controls the zeta potentials. The sizes of the CeNP aggregates, 100-1300 nm, were constrained by the zeta potentials. The steric barrier derived from the polymers, even in SS, enhanced the CeNP dispersibility at pH 1.5-10. Consequently, the PS and SS had similar effects on modifying the CeNP surfaces. The adsorption of ES, which contains PS + SS, can suppress the aggregation of CeNPs over a wider pH range than that for PS only. The present study addresses the non-negligible effects of small-sized molecules derived from microbial activity on the migration of CeNP in aquatic environments, especially where bacterial consortia prevail.

16.
ACS Omega ; 3(9): 12179-12187, 2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31459292

RESUMO

Two high-organic-sulfur Kentucky coals, the eastern Kentucky River Gem coal and the western Kentucky Davis coal, are examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), both including elemental analysis by energy-dispersive spectroscopy (EDS). From the SEM-EDS analysis, it is observed that the western Kentucky coal had areas with Pb and Cd in addition to the expected Fe and S and the eastern Kentucky coal had individual Fe-S-rich areas with La and Ni and with Si, Al, Cr, Ni, and Ti. TEM and selected area electron diffraction (SAED) analyses demonstrate that anglesite with a rim of Pb-bearing amorphous Fe-oxide occurs in the western Kentucky coal. Melanterite, an Fe-sulfate, with minor Al, Si, and K EDS peaks, suggests that clay minerals may be in close association with the sulfate, is also detected in the coal. A polycrystalline metal in the eastern Kentucky sample with a composition similar to stainless steel is adjacent to an Al-rich shard. Euhedral pyrite grains surrounded by kaolinite and gibbsite are detected. Overall, it is noted that element associations should not be assumed to be organic just because minerals cannot be seen with optical microscopy or with standard bulk analytical techniques, such as X-ray diffraction (XRD).

17.
Water Res ; 129: 277-286, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29156392

RESUMO

Biofilms are ubiquitous throughout aquatic environments and they are thought to promote the acquisition and dissemination of antibiotic resistant genes (ARGs). This study focused on the occurrence and distribution of five types of ARG in naturally-occurring biofilms, in comparison to associated sediment and water samples, from the Yangtze Estuary, which borders the meta-city of Shanghai, China. The detection frequency and abundances of most ARGs showed the following order: biofilm > sediment > water, which can be attributed to a high level of antibiotics and metals that can accelerate the generation and propagation of ARGs in biofilms. Most of ARG abundances were contributed by extracellular DNA (eDNA) in biofilm and sediment samples. ARGs (sul1, sul2, tetA and tetW) in eDNA were significantly correlated with TOC in both biofilm and sediment samples. Furthermore, both intracellular DNA-associated ARGs per gram of microbial biomass carbon (MBC) and eDNA-associated ARGs per gram of non-MBC and were higher in biofilms than sediments, and the partitioning coefficients of ARGs in eDNA between biofilm and water were higher than those between sediment and water. Our results provide new insight for evaluating the occurrence and abundance of ARGs in aquatic environments, confirming that biofilms are a significant sink for ARGs in the estuarine environment.


Assuntos
Biofilmes , Resistência Microbiana a Medicamentos/genética , Estuários , Genes Bacterianos , Poluentes Químicos da Água/análise , Antibacterianos/análise , China , Água Doce/análise , Sedimentos Geológicos/análise
18.
Environ Sci Process Impacts ; 19(8): 1016-1027, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28792042

RESUMO

Nanoparticles (NPs) often play significant roles in dictating the transport, distribution, bioavailability and toxicity of contaminants in the environment. Incidental NPs (i.e. NPs of anthropogenic origin but not purposely engineered) are often overlooked in contaminant transport and fate studies; yet in many systems they dominate contaminant transport processes. Using surficial contaminated regosols from Trail, British Columbia, Canada, a metal smelting and refining area along the banks of the Columbia River, we show that sequestration of Pb-, Zn-, Sb-, and As-bearing incidental NPs is strongly influenced by their aggregation, crystal growth, and/or particle attachment to mineral surface coatings (MSC) and in mineralized organic matter (MOM). Transmission electron microscopy shows the occurrence of NPs of anglesite (PbSO4), Fe-As-phosphate, kintoreite (Pb[(Fe,Al)3(P(As)O4)(PO3(OH))(OH)6]), and franklinite (ZnFe2O4) in matrices of amorphous silica which retain different stages of their agglomeration and aggregation. Other identified nano-size phases in the MSC and MOM indicate a complex and previously unrecognized mineralogy of Pb-, Zn-, Sb-, and As-phase in surficial soils. Mineralogical complexity and the various sequestration processes observed in this study indicate a new dimension of nano-scale processes on mineral surfaces and organic matter that have been previously overlooked when studying the fate of contaminants with bulk-analytical tools such as micro-X-ray diffraction or synchrotron-based spectroscopic methods.


Assuntos
Metaloides/análise , Metais Pesados/análise , Minerais/química , Nanopartículas/análise , Poluentes do Solo/análise , Solo/química , Colúmbia Britânica , Fenômenos Geológicos , Metalurgia , Silicatos/química , Solubilidade , Propriedades de Superfície
19.
Nat Commun ; 8(1): 194, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28790379

RESUMO

Coal, as one of the most economic and abundant energy sources, remains the leading fuel for producing electricity worldwide. Yet, burning coal produces more global warming CO2 relative to all other fossil fuels, and it is a major contributor to atmospheric particulate matter known to have a deleterious respiratory and cardiovascular impact in humans, especially in China and India. Here we have discovered that burning coal also produces large quantities of otherwise rare Magnéli phases (Ti x O2x-1 with 4 ≤ x ≤ 9) from TiO2 minerals naturally present in coal. This provides a new tracer for tracking solid-state emissions worldwide from industrial coal-burning. In its first toxicity testing, we have also shown that nanoscale Magnéli phases have potential toxicity pathways that are not photoactive like TiO2 phases, but instead seem to be biologically active without photostimulation. In the future, these phases should be thoroughly tested for their toxicity in the human lung.Solid-state emissions from coal burning remain an environmental concern. Here, the authors have found that TiO2 minerals present in coal are converted into titanium suboxides during burning, and initial biotoxicity screening suggests that further testing is needed to look into human lung consequences.


Assuntos
Poluição do Ar , Carvão Mineral , Fontes Geradoras de Energia , Titânio/análise , Animais , Humanos , Pulmão/efeitos dos fármacos , Titânio/toxicidade , Testes de Toxicidade , Peixe-Zebra/embriologia
20.
Environ Sci Technol ; 51(9): 4831-4840, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28380301

RESUMO

Nanoparticle (NP) assessment in sludge materials, although of growing importance in eco- and biotoxicity studies, is commonly overlooked and, at best, understudied. In the present study, sewage sludge samples from across the mega-city of Shanghai, China were investigated for the first time using a sequential extraction method coupled with single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) to quantify the abundance of metal-containing NPs in the extraction fractions and transmission electron microscopy to specifically identify the nanophases present. In general, most sludges observed showed high concentrations of Cr, Cu, Cd, Ni, Zn, and Pb, exceeding the maximum permitted values in the national application standard of acid soil in China. NPs in these sludges contribute little to the volume and mass but account for about half of the total particle number. Based on electron microscopy techniques, various NPs were further identified, including Ti-, Fe-, Zn-, Sn-, and Pb-containing NPs. All NPs, ignored by traditional metal risk evaluation methods, were observed at a concentration of 107 -1011 particles/g within the bioavailable fraction of metals. These results indicate the underestimate or misestimation in evaluating the environmental risks of metals based on traditional sequential extraction methods. A new approach for the environmental risk assessment of metals, including NPs, is urgently needed.


Assuntos
Esgotos/química , Águas Residuárias , China , Monitoramento Ambiental , Metais Pesados , Nanopartículas , Água , Purificação da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...