Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
J Vis Exp ; (205)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38526074

RESUMO

This protocol outlines an acute respiratory distress model utilizing centrally administered oleic acid infusion in Yorkshire pigs. Prior to experimentation, each pig underwent general anesthesia, endotracheal intubation, and mechanical ventilation, and was equipped with bilateral jugular vein central vascular access catheters. Oleic acid was administered through a dedicated pulmonary artery catheter at a rate of 0.2 mL/kg/h. The infusion lasted for 60-120 min, inducing respiratory distress. Throughout the experiment, various parameters including heart rate, respiratory rate, arterial blood pressure, central venous pressure, pulmonary artery pressure, pulmonary capillary wedge pressure, end-tidal carbon dioxide, peak airway pressures, and plateau pressures were monitored. Around the 60 min mark, decreases in partial arterial oxygen pressure (PaO2) and fraction of oxygen-saturated hemoglobin (SpO2) were observed. Periodic hemodynamic instability, accompanied by acute increases in pulmonary artery pressures, occurred during the infusion. Post-infusion, histological analysis of the lung parenchyma revealed changes indicative of parenchymal damage and acute disease processes, confirming the effectiveness of the model in simulating acute respiratory decompensation.


Assuntos
Síndrome do Desconforto Respiratório , Insuficiência Respiratória , Animais , Suínos , Ácido Oleico , Hemodinâmica , Oxigênio
2.
J Vis Exp ; (203)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38284537

RESUMO

This protocol describes an acute volume overload porcine model for adult Yorkshire pigs and piglets. Both swine ages undergo general anesthesia, endotracheal intubation, and mechanical ventilation. A central venous catheter and an arterial catheter are placed via surgical cutdown in the external jugular vein and carotid artery, respectively. A pulmonary artery catheter is placed through an introducer sheath of the central venous catheter. PlasmaLyte crystalloid solution is then administered at a rate of 100 mL/min in adult pigs and at 20 mL/kg boluses over 10 min in piglets. Hypervolemia is achieved either at 15% decrease in cardiac output or at 5 L in adult pigs and at 500 mL in piglets. Hemodynamic data, such as heart rate, respiratory rate, end-tidal carbon dioxide, fraction of oxygen-saturated hemoglobin, arterial blood pressure, central venous pressure, pulmonary artery pressure, pulmonary capillary wedge pressure, partial arterial oxygen pressure, lactate, pH, base excess, and pulmonary artery fraction of oxygen-saturated hemoglobin, are monitored during experimentation. Preliminary data observed with this model has demonstrated statistically significant changes and strong linear regressions between central hemodynamic parameters and acute volume overload in adult pigs. Only pulmonary capillary wedge pressure demonstrated both a linear regression and a statistical significance to acute volume overload in piglets. These models can aid scientists in the discovery of age-appropriate therapeutic and monitoring strategies to understand and prevent acute volume overload.


Assuntos
Hemodinâmica , Respiração Artificial , Humanos , Adulto , Criança , Animais , Suínos , Débito Cardíaco/fisiologia , Oxigênio , Hemoglobinas
3.
Cureus ; 15(8): e43103, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37692606

RESUMO

Background Animal models of distributive hypotension and resuscitation allow the assessment of hemodynamic monitoring modalities and resuscitation strategies. The fluid-first paradigm for resuscitation is currently being challenged with clinical trials. In this investigation, venous return and perfusion are assessed, and full hemodynamics are characterized, in a porcine model of endotoxemic hypotension with and without fluid pre-loading. Methods Two groups of six pigs had the induction of standardized endotoxemic hypotension ("critical hypotension"). Group 1 underwent four 10 cc/kg crystalloid boluses, and Group 2 was not fluid pre-resuscitated. Both groups underwent progressive norepinephrine (NE) up-titration to 0.25 mcg/kg/minute over 30 minutes. Vital signs, central parameters, and laboratory values were obtained at baseline, "critical hypotension," after each bolus and during NE administration. Results Endotoxemia decreased the systemic vascular resistance (SVR) in Group 1 (1031±106 dyn/s/cm-5 versus 738±258 dyn/s/cm-5; P=0.03) and Group 2 (1121±196 dyn/s/cm-5 versus 759±342 dyn/s/cm-5; P=0.003). In Group 1, the four fluid boluses decreased heart rate (HR), pulmonary capillary wedge pressure (PCWP), and central venous pressure (CVP) (P<0.05). No changes were observed in blood pressure, cardiac output (CO), or lactate. NE up-titration increased HR in Group 1 and decreased CVP in both groups. Higher final CVP (11 {3} versus 4 {4} mmHg; P=0.01) and PCWP (5 {1} versus 2 {2} mmHg; P=0.005) values were observed in Group 1 relative to Group 2, reflecting increased venous return. Conclusions Porcine endotoxemic hypotension and resuscitation were robustly characterized. In this model, fluid loading improved venous return with NE, though perfusion (CO) was preserved by increased NE-induced chronotropy.

4.
J Am Coll Surg ; 236(2): 294-304, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36648257

RESUMO

BACKGROUND: Cardiac output (CO) is a valuable proxy for perfusion, and governs volume responsiveness during resuscitation from distributive shock. The underappreciated venous system has nuanced physiology that confers valuable hemodynamic information. In this investigation, deconvolution of the central venous waveform by the fast Fourier transformation (FFT) algorithm is performed to assess its ability to constitute a CO surrogate in a porcine model of endotoxemia-induced distributive hypotension and resuscitation. STUDY DESIGN: Ten pigs were anesthetized, catheterized, and intubated. A lipopolysaccharides infusion protocol was used to precipitate low systemic vascular resistance hypotension. Four crystalloid boluses (10 cc/kg) were then given in succession, after which heart rate, mean arterial pressure, thermodilution-derived CO, central venous pressure (CVP), and the central venous waveform were collected, the last undergoing fast Fourier transformation analysis. The amplitude of the fundamental frequency of the central venous waveform's cardiac wave (f0-CVP) was obtained. Heart rate, mean arterial pressure, CVP, f0-CVP, and CO were plotted over the course of the boluses to determine whether f0-CVP tracked with CO better than the vital signs, or than CVP itself. RESULTS: Distributive hypotension to a 25% mean arterial pressure decrement was achieved, with decreased systemic vascular resistance (mean 918 ± 227 [SD] dyne/s/cm-5 vs 685 ± 180 dyne/s/cm-5; p = 0.038). Full hemodynamic parameters characterizing this model were reported. Slopes of linear regression lines of heart rate, mean arterial pressure, CVP, f0-CVP, and CO were -2.8, 1.7, 1.8, 0.40, and 0.35, respectively, demonstrating that f0-CVP values closely track with CO over the 4-bolus range. CONCLUSIONS: Fast Fourier transformation analysis of the central venous waveform may allow real-time assessment of CO during resuscitation from distributive hypotension, possibly offering a venous-based approach to clinical estimation of volume responsiveness.


Assuntos
Endotoxemia , Hipotensão , Suínos , Animais , Débito Cardíaco/fisiologia , Hemodinâmica , Hipotensão/etiologia , Hipotensão/terapia , Ressuscitação/métodos
5.
Surg Endosc ; 37(2): 1440-1448, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35764835

RESUMO

BACKGROUND: Understanding factors that increase risk of both mortality and specific measures of morbidity after duodenal switch (DS) is important in deciding to offer this weight loss operation. Artificial neural networks (ANN) are computational deep learning approaches that model complex interactions among input factors to optimally predict an outcome. Here, a comprehensive national database is examined for patient factors associated with poor outcomes, while comparing the performance of multivariate logistic regression and ANN models in predicting these outcomes. METHODS: 2907 DS patients from the 2019 Metabolic and Bariatric Surgery Accreditation and Quality Improvement Program database were assessed for patient factors associated with the previously validated composite endpoint of 30-day postoperative reintervention, reoperation, readmission, or mortality using bivariate analysis. Variables associated (P ≤ 0.05) with the endpoint were imputed in a multivariate logistic regression model and a three-node ANN with 20% holdback for validation. Goodness-of-fit was assessed using area under receiver operating curves (AUROC). RESULTS: There were 229 DS patients with the composite endpoint (7.9%), and 12 mortalities (0.4%). Associated patient factors on bivariate analysis included advanced age, non-white race, cardiac history, hypertension requiring 3 + medications (HTN), previous foregut/obesity surgery, obstructive sleep apnea (OSA), and higher creatinine (P ≤ 0.05). Upon multivariate analysis, independently associated factors were non-white race (odds ratio 1.40; P = 0.075), HTN (1.55; P = 0.038), previous foregut/bariatric surgery (1.43; P = 0.041), and OSA (1.46; P = 0.018). The nominal logistic regression multivariate analysis (n = 2330; R2 = 0.02, P < 0.001) and ANN (R2 = 0.06; n = 1863 [training set], n = 467 [validation]) models generated AUROCs of 0.619, 0.656 (training set) and 0.685 (validation set), respectively. CONCLUSION: Readily obtainable patient factors were identified that confer increased risk of the 30-day composite endpoint after DS. Moreover, use of an ANN to model these factors may optimize prediction of this outcome. This information provides useful guidance to bariatricians and surgical candidates alike.


Assuntos
Cirurgia Bariátrica , Procedimentos Cirúrgicos do Sistema Digestório , Hipertensão , Apneia Obstrutiva do Sono , Humanos , Redes Neurais de Computação , Morbidade
6.
Med Res Arch ; 10(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38249786

RESUMO

Introduction: A cornerstone of heart failure assessment is the right heart catheterization and the pulmonary capillary wedge pressure measurement it can provide. Clinical and hemodynamic parameters such as weight and jugular venous distention are less invasive measures often used to diagnose, manage, and treat these patients. To date, there is little data looking at the association of these key parameters to measured pulmonary capillary wedge pressure (PCWP). This is a large, retrospective, secondary analysis of a right heart catheterization database comparing clinical and hemodynamic parameters against measured PCWP in heart failure patients. Methods: A total of 538 subjects were included in this secondary analysis. Spearman's Rho analysis of each clinical and hemodynamic variable was used to compare their association to the documented PCWP. Variables analyzed included weight, body mass index (BMI), jugular venous distention (JVD), creatinine, edema grade, right atrial pressure (RAP), pulmonary artery systolic pressure (PASP), systemic vascular resistance, pulmonary vascular resistance, cardiac output (thermal and Fick), systolic blood pressure, diastolic blood pressure, heart rate, respiratory rate, oxygen saturation (SpO2), and pulmonary artery diastolic pressure (PADP). Results: Ten out of 17 selected parameters had a statistically significant association with measured PCWP values. PADP had the strongest association (0.73, p<0.0001), followed by RAP and PASP (0.69, p<0.0001 and 0.67, p<0.0001, respectively). Other significant parameters included weight (0.2, p<0.001), BMI (0.2, p<0.001), SpO2 (-0.17, p<0.0091), JVD (0.24, p<0.005) and edema grade (0.2, p<0.0001). Conclusion: This retrospective analysis clarifies the associations of commonly used clinical and hemodynamic parameters to the clinically used gold standard for volume assessment in heart failure patients, PCWP.

7.
Am Heart J Plus ; 152022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35600671

RESUMO

Introduction: Clinical symptoms of heart failure commonly include fatigue, edema, and shortness of breath. Unfortunately, clinical monitoring has proven unreliable in predicting congestion and the need for hospitalization. Biosensing wearables have been developed as a potential adjunct to clinical signs and symptoms to detect congestion before it becomes severe thus preventing a heart failure hospitalization. Hypothesis: Clinical signs and symptoms of heart failure will correlate with thoracic bioimpedance measurements (ZOE®) and pulmonary capillary wedge pressure (PCWP). Methods: One hundred and fifty-five subjects undergoing right heart catheterization (RHC) were prospectively enrolled. A Zo value (ohms) was obtained, jugular venous pressure (JVP) was estimated, edema graded, and shortness of breath (SOB) assessed in all subjects. RHC was performed by a scheduled cardiologist per routine. One-way ANOVA was performed to assess the relationship between variables. A Pearson correlation coefficient was used to compare the Zo value and PCWP. Results: Neither estimated JVP (cmH2O) (p = 0.65, n = 110) nor edema scores (p = 0.12, n = 110) demonstrated a significant relationship to PCWP. The presence of subjective SOB also did not demonstrate a significant association with PCWP (p = 0.99, n = 110). There was no correlation between ZOE® and PCWP (r = -0.08, p = 0.56, n = 56). Conclusions: These findings support the idea that traditional measures for monitoring heart failure patients are limited.

8.
J Card Fail ; 28(12): 1692-1702, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34555524

RESUMO

BACKGROUND: Heart failure is the leading cause of hospitalization in the elderly and readmission is common. Clinical indicators of congestion may not precede acute congestion with enough time to prevent hospital admission for heart failure. Thus, there is a large and unmet need for accurate, noninvasive assessment of congestion. Noninvasive venous waveform analysis in heart failure (NIVAHF) is a novel, noninvasive technology that monitors intravascular volume status and hemodynamic congestion. The objective of this study was to determine the correlation of NIVAHF with pulmonary capillary wedge pressure (PCWP) and the ability of NIVAHF to predict 30-day admission after right heart catheterization. METHODS AND RESULTS: The prototype NIVAHF device was compared with the PCWP in 106 patients undergoing right heart catheterization. The NIVAHF algorithm was developed and trained to estimate the PCWP. NIVA scores and central hemodynamic parameters (PCWP, pulmonary artery diastolic pressure, and cardiac output) were evaluated in 84 patients undergoing outpatient right heart catheterization. Receiver operating characteristic curves were used to determine whether a NIVA score predicted 30-day hospital admission. The NIVA score demonstrated a positive correlation with PCWP (r = 0.92, n = 106, P < .0001). The NIVA score at the time of hospital discharge predicted 30-day admission with an AUC of 0.84, a NIVA score of more than 18 predicted admission with a sensitivity of 91% and specificity of 56%. Residual analysis suggested that no single patient demographic confounded the predictive accuracy of the NIVA score. CONCLUSIONS: The NIVAHF score is a noninvasive monitoring technology that is designed to provide an estimate of PCWP. A NIVA score of more than 18 indicated an increased risk for 30-day hospital admission. This noninvasive measurement has the potential for guiding decongestive therapy and the prevention of hospital admission in patients with heart failure.


Assuntos
Insuficiência Cardíaca , Humanos , Idoso , Pressão Propulsora Pulmonar , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/terapia , Valor Preditivo dos Testes , Cateterismo Cardíaco , Hospitalização
9.
J Craniofac Surg ; 33(5): 1312-1316, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34759255

RESUMO

ABSTRACT: Minimally-invasive endoscopic-assisted craniectomy (EAC) achieves similar functional and cosmetic outcomes, whereas reducing morbidity risk that is often associated with complex cranial vault reconstruction. Antifibrinolytics (AF) usage to limit blood loss and transfusion requirements during complex cranial vault reconstruction has been studied extensively; however, studies are limited for AF therapy in EAC. The aim of this single-center retrospective observational cohort pilot study was to evaluate whether the use of AF was associated with reduced blood loss in infants undergoing EAC. The authors hypothesized that there would be no difference in blood loss between patients who received AF and those that did not receive AF during EAC. Non-syndromic patients who underwent single-suture EAC were retrospectively evaluated. Primary outcome measure was intraoperative calculated blood loss (mL/kg). Secondary outcome measures included perioperative red blood cells transfusion volumes, number of blood donor exposures, and pediatric intensive care unit and total hospital length of stay. Study cohort demographic and outcome data were analyzed; Fisher exact test was used for categorical data, Student t test was used for continuous data. A P value of <0.05 was considered statistically significant. Forty-nine EAC patients were included in the study with 34 patients in the AF cohort and 15 patients in the non-AF cohort. There were no significant differences in demographics between the 2 groups. Additionally, there was no significant difference in intraoperative calculated blood loss or any secondary outcome measure. In our single-suture EAC study cohorts, AF administration was not associated with a decrease in blood loss when compared to those that did not receive AF therapy.


Assuntos
Antifibrinolíticos , Craniossinostoses , Perda Sanguínea Cirúrgica/prevenção & controle , Criança , Craniossinostoses/cirurgia , Craniotomia , Humanos , Lactente , Projetos Piloto , Estudos Retrospectivos , Suturas , Resultado do Tratamento
10.
Crit Care Explor ; 3(10): e0539, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34617035

RESUMO

OBJECTIVES: Due to the rapid rate of severe acute respiratory syndrome coronavirus 2 transmission and the heterogeneity of symptoms of coronavirus disease 2019, expeditious and effective triage is critical for early treatment and effective allocation of hospital resources. DESIGN: A post hoc analysis of respiratory data from non-invasive venous waveform analysis among patients enrolled in an observational study was performed. SETTING: Vanderbilt University Medical Center. PATIENTS: Peripheral venous waveforms were recorded from admission to discharge in enrolled coronavirus disease 2019-positive patients and healthy age-matched controls. INTERVENTIONS: Data were analyzed in LabChart 8 to transform venous waveforms to the frequency domain using fast Fourier transforms. The peak respiratory frequency was normalized to the peak cardiac frequency to generate a respiratory non-invasive venous waveform analysis respiratory index. Paired Fisher exact tests were used to compare each patient's respiratory non-invasive venous waveform analysis respiratory index at admission and discharge. A nonparametric one-way analysis of variance was used for multiple comparisons between patients with coronavirus disease 2019 and healthy controls for respiratory non-invasive venous waveform analysis respiratory index. MEASUREMENTS AND MAIN RESULTS: Fifty coronavirus disease 2019-positive patients were enrolled between April 2020, and September 2020, and 45 were analyzed; 34 required supplemental oxygen and 11 did not. The respiratory non-invasive venous waveform analysis respiratory index was significantly higher for the 34 patients with coronavirus disease 2019 who received supplemental oxygen (median, 0.27; interquartile range, 0.11-1.28) compared with the 34 healthy controls (median, 0.06; interquartile range, 0.03-0.14) (p < 0.01). For patients with coronavirus disease 2019 who received supplemental oxygen, respiratory non-invasive venous waveform analysis respiratory index was significantly lower at hospital discharge (p = 0.02; 95% CI, 0.10-1.9) compared with hospital admission (median = 0.12; interquartile range, 0.05-0.56). For patients with coronavirus disease 2019, a respiratory non-invasive venous waveform analysis respiratory index of 0.64 demonstrated sensitivity of 92%, specificity of 47%, and positive predictive value of 93% for predicting requirement of supplemental oxygen during the hospitalization. CONCLUSIONS: Respiratory non-invasive venous waveform analysis respiratory index represents a novel physiologic respiratory measurement with a promising ability to triage early care and predict the need for oxygen support therapy in coronavirus disease 2019 patients.

11.
Anesthesiology ; 134(4): 607-616, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33635950

RESUMO

BACKGROUND: Measuring fluid status during intraoperative hemorrhage is challenging, but detection and quantification of fluid overload is far more difficult. Using a porcine model of hemorrhage and over-resuscitation, it is hypothesized that centrally obtained hemodynamic parameters will predict volume status more accurately than peripherally obtained vital signs. METHODS: Eight anesthetized female pigs were hemorrhaged at 30 ml/min to a blood loss of 400 ml. After each 100 ml of hemorrhage, vital signs (heart rate, systolic blood pressure, mean arterial pressure, diastolic blood pressure, pulse pressure, pulse pressure variation) and centrally obtained hemodynamic parameters (mean pulmonary artery pressure, pulmonary capillary wedge pressure, central venous pressure, cardiac output) were obtained. Blood volume was restored, and the pigs were over-resuscitated with 2,500 ml of crystalloid, collecting parameters after each 500-ml bolus. Hemorrhage and resuscitation phases were analyzed separately to determine differences among parameters over the range of volume. Conformity of parameters during hemorrhage or over-resuscitation was assessed. RESULTS: During the course of hemorrhage, changes from baseline euvolemia were observed in vital signs (systolic blood pressure, diastolic blood pressure, and mean arterial pressure) after 100 ml of blood loss. Central hemodynamic parameters (mean pulmonary artery pressure and pulmonary capillary wedge pressure) were changed after 200 ml of blood loss, and central venous pressure after 300 ml of blood loss. During the course of resuscitative volume overload, changes were observed from baseline euvolemia in mean pulmonary artery pressure and central venous pressure after 500-ml resuscitation, in pulmonary capillary wedge pressure after 1,000-ml resuscitation, and cardiac output after 2,500-ml resuscitation. In contrast to hemorrhage, vital sign parameters did not change during over-resuscitation. The strongest linear correlation was observed with pulmonary capillary wedge pressure in both hemorrhage (r2 = 0.99) and volume overload (r2 = 0.98). CONCLUSIONS: Pulmonary capillary wedge pressure is the most accurate parameter to track both hemorrhage and over-resuscitation, demonstrating the unmet clinical need for a less invasive pulmonary capillary wedge pressure equivalent.


Assuntos
Soluções Cristaloides/administração & dosagem , Hidratação/efeitos adversos , Hemodinâmica , Hemorragia/fisiopatologia , Animais , Volume Sanguíneo , Modelos Animais de Doenças , Feminino , Ressuscitação , Suínos , Sinais Vitais
12.
JRSM Cardiovasc Dis ; 9: 2048004020970038, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194174

RESUMO

The peripheral venous system serves as a volume reservoir due to its high compliance and can yield information on intravascular volume status. Peripheral venous waveforms can be captured by direct transduction through a peripheral catheter, non-invasive piezoelectric transduction, or gleaned from other waveforms such as the plethysmograph. Older analysis techniques relied upon pressure waveforms such as peripheral venous pressure and central venous pressure as a means of evaluating fluid responsiveness. Newer peripheral venous waveform analysis techniques exist in both the time and frequency domains, and have been applied to various clinical scenarios including hypovolemia (i.e. hemorrhage, dehydration) and volume overload.

13.
JRSM Cardiovasc Dis ; 9: 2048004020940857, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32864123

RESUMO

OBJECTIVES: Non-invasive venous waveform analysis (NIVA) is a recently described, novel technique to assess intravascular volume status. Waveforms are captured with a piezoelectric sensor; analysis in the frequency domain allows for calculation of a "NIVA value" that represents volume status. The aim of this report was to determine the effects of vasoactive agents on the venous waveform and calculated NIVA values. DESIGN: Porcine experimental model. SETTING: Operating theatre. PARTICIPANTS: A piezoelectric sensor was secured over the surgically exposed saphenous vein in eight anesthetized pigs. MAIN OUTCOME MEASURES: NIVA value, pulmonary capillary wedge pressure (PCWP), and mean arterial pressure prior to and post intravenous administration of 150-180 µg of phenylephrine or 100 µg of sodium nitroprusside. RESULTS: Phenylephrine led to a decrease in NIVA value (mean 9.2 vs. 4.6, p < 0.05), while sodium nitroprusside led to an increase in NIVA value (mean 9.5 vs. 11.9, p < 0.05). Mean arterial pressure increased after phenylephrine (p < 0.05) and decreased after sodium nitroprusside (p < 0.05). PCWP did not change significantly after phenylephrine (p = 0.25) or sodium nitroprusside (p = 0.06). CONCLUSIONS: Vasoactive agents lead to changes in non-invasively obtained venous waveforms in euvolemic pigs, highlighting a potential limitation in the ability to NIVA to estimate static volume in this setting. Further studies are indicated to understand the effects of vasoactive agents in the setting of hypovolemia and hypervolemia.

14.
PLoS One ; 15(7): e0235933, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32640004

RESUMO

BACKGROUND: Non-Invasive Venous waveform Analysis (NIVA) is novel technology that captures and analyzes changes in venous waveforms from a piezoelectric sensor on the wrist for hemodynamic volume assessment. Complex cranial vault reconstruction is performed in children with craniosynostosis and is associated with extensive blood loss, potential life-threatening risks, and significant morbidity. In this preliminary study, we hypothesized that NIVA will provide a reliable, non-invasive, quantitative assessment of intravascular volume changes in children undergoing complex cranial vault reconstruction. OBJECTIVE: To present proof-of-concept results of a novel technology in the pediatric population. METHODS: The NIVA prototype was placed on each subject's wrist, and venous waveforms were collected intraoperatively. Estimated blood loss and fluid/blood product administration were recorded in real time. Venous waveforms were analyzed into a NIVA value and then correlated, along with mean arterial pressure (MAP), to volume changes. Concordance was quantified to determine if the direction of change in volume was similar to the direction of change in MAP or change in NIVA. RESULTS: Of 18 patients enrolled, 14 had usable venous waveforms, and there was a significant correlation between change in NIVA value and change in volume. Change in MAP did not correlate with change in volume. The concordance between change in MAP and change in volume was less than the concordance between change in NIVA and change in volume. CONCLUSION: NIVA values correlate more closely to intravascular volume changes in pediatric craniofacial patients than MAP. This initial study suggests that NIVA is a potential safe, reliable, non-invasive quantitative method of measuring intravascular volume changes for children undergoing surgery.


Assuntos
Craniossinostoses/cirurgia , Veias/fisiologia , Pressão Arterial/fisiologia , Perda Sanguínea Cirúrgica , Criança , Pré-Escolar , Craniossinostoses/terapia , Feminino , Hidratação , Hemodinâmica , Humanos , Lactente , Masculino , Procedimentos de Cirurgia Plástica
15.
BMC Nephrol ; 21(1): 194, 2020 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-32448178

RESUMO

BACKGROUND: Accurate assessment of volume status to direct dialysis remains a clinical challenge. Despite current attempts at volume-directed dialysis, inadequate dialysis and intradialytic hypotension (IDH) are common occurrences. Peripheral venous waveform analysis has recently been developed as a method to accurately determine intravascular volume status through algorithmic quantification of changes in the waveform that occur at different volume states. A noninvasive method to capture peripheral venous signals is described (Non-Invasive Venous waveform Analysis, NIVA). The objective of this proof-of-concept study was to characterize changes in NIVA signal with dialysis. We hypothesized that there would be a change in signal after dialysis and that the rate of intradialytic change in signal would be predictive of IDH. METHODS: Fifty subjects undergoing inpatient hemodialysis were enrolled. A 10-mm piezoelectric sensor was secured to the middle volar aspect of the wrist on the extremity opposite to the access site. Signals were obtained fifteen minutes before, throughout, and up to fifteen minutes after hemodialysis. Waveforms were analyzed after a fast Fourier transformation and identification of the frequencies corresponding to the cardiac rate, with a NIVA value generated based on the weighted powers of these frequencies. RESULTS: Adequate quality (signal to noise ratio > 20) signals pre- and post- dialysis were obtained in 38 patients (76%). NIVA values were significantly lower at the end of dialysis compared to pre-dialysis levels (1.203 vs 0.868, p < 0.05, n = 38). Only 16 patients had adequate signals for analysis throughout dialysis, but in this small cohort the rate of change in NIVA value was predictive of IDH with a sensitivity of 80% and specificity of 100%. CONCLUSIONS: This observational, proof-of-concept study using a NIVA prototype device suggests that NIVA represents a novel and non-invasive technique that with further development and improvements in signal quality may provide static and continuous measures of volume status to assist with volume directed dialysis and prevent intradialytic hypotension.


Assuntos
Volume Sanguíneo , Hipotensão/etiologia , Monitorização Fisiológica/métodos , Diálise Renal/efeitos adversos , Processamento de Sinais Assistido por Computador , Adulto , Idoso , Idoso de 80 Anos ou mais , Volume Sanguíneo/fisiologia , Feminino , Análise de Fourier , Humanos , Masculino , Pessoa de Meia-Idade , Monitorização Fisiológica/instrumentação , Estudo de Prova de Conceito , Sensibilidade e Especificidade , Razão Sinal-Ruído
16.
J Card Fail ; 26(2): 136-141, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31574315

RESUMO

BACKGROUND: Outpatient monitoring and management of patients with heart failure (HF) reduces hospitalizations and health care costs. However, the availability of noninvasive approaches to assess congestion is limited. Noninvasive venous waveform analysis (NIVA) uses a unique physiologic signal, the morphology of the venous waveform, to assess intracardiac filling pressures. This study is a proof of concept analysis of the correlation between NIVA value and pulmonary capillary wedge pressure (PCWP) and the ability of the NIVA value to predict PCWP > 18 mmHg in subjects undergoing elective right heart catheterization (RHC). PCWP was also compared across common clinical correlates of congestion. METHODS AND RESULTS: A prototype NIVA device, which consists of a piezoelectric sensor placed over the skin on the volar aspect of the wrist, connected to a data-capture control box, was used to collect venous waveforms in 96 patients during RHC. PCWP was collected at end-expiration by an experienced cardiologist. The venous waveform signal was transformed to the frequency domain (Fourier transform), where a ratiometric algorithm of the frequencies of the pulse rate and its harmonics was used to derive a NIVA value. NIVA values were successfully captured in 83 of 96 enrolled patients. PCWP ranged from 4-40 mmHg with a median of 13 mmHg. NIVA values demonstrated a linear correlation with PCWP (r = 0.69, P < 0.05). CONCLUSIONS: This observational proof-of-concept study using a prototype NIVA device demonstrates a moderate correlation between NIVA value and PCWP in patients undergoing RHC. NIVA, thus, represents a promising developing technology for noninvasive assessment of congestion in spontaneously breathing patients.


Assuntos
Cateterismo Cardíaco/métodos , Insuficiência Cardíaca/diagnóstico , Pressão Propulsora Pulmonar/fisiologia , Análise de Onda de Pulso/métodos , Volume Sistólico/fisiologia , Adulto , Idoso , Feminino , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Componente Principal/métodos
17.
J Clin Anesth ; 61: 109664, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31786067

RESUMO

STUDY OBJECTIVE: There is an unmet need for a non-invasive approach to diagnose hemorrhage early, before changes in vital signs occur. Non-Invasive Venous waveform Analysis (NIVA) uses a unique physiological signal (the peripheral venous waveform) to assess intravascular volume. We hypothesized changes in the venous waveform would be observed with blood loss in healthy adult blood donors and characterized hemorrhage using invasive monitoring in a porcine model. DESIGN: Prospective observational study. SETTING: American Red Cross donation center. PATIENTS: 50 human blood donors and 12 non-donating controls; 7 Yorkshire pigs. INTERVENTIONS: A venous waveform capturing prototype (NIVA device) was secured to the volar aspect of the wrist in human subjects. A central venous catheter was used to obtain hemodynamic indices and venous waveforms were obtained using the prototype NIVA device over the saphenous vein during 400 mL of graded hemorrhage in a porcine model. MEASUREMENTS: Venous waveforms were transformed from the time to the frequency domain. The ratiometric power contributions of the cardiac frequencies were used to calculate a NIVA value representative of volume status. MAIN RESULTS: A significant decrease in NIVA value was observed after 500 mL of whole blood donation (p < .05). A ROC curve for the ability of the NIVA to detect 500 mL of blood loss demonstrated an area under the curve (AUC) of 0.94. In the porcine model, change in NIVA value correlated linearly with blood loss and with changes in hemodynamic indices. CONCLUSIONS: This study provides proof-of-concept for a potential application of NIVA in detection of blood loss. NIVA represents a novel physiologic signal for detection of early blood loss that may be useful in early triage and perioperative management.


Assuntos
Doadores de Sangue , Hemorragia , Adulto , Animais , Hemodinâmica , Hemorragia/diagnóstico , Hemorragia/etiologia , Humanos , Monitorização Fisiológica , Estudos Prospectivos , Curva ROC , Suínos
19.
PLoS One ; 14(8): e0220893, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31412063

RESUMO

Resuscitation with 0.9% Normal Saline (NS), a non-buffered acidic solution, leads to increased morbidity and mortality in the critically ill. The goal of this study was to determine the molecular mechanisms of endothelial injury after exposure to NS. The hypothesis of this investigation is that exposure of endothelium to NS would lead to loss of cell membrane integrity, resulting in release of ATP, activation of the purinergic receptor (P2X7R), and subsequent activation of stress activated signaling pathways and inflammation. Human saphenous vein endothelial cells (HSVEC) incubated in NS, but not buffered electrolyte solution (Plasma-Lyte, PL), exhibited abnormal morphology and increased release of lactate dehydrogenase (LDH), adenosine triphosphate (ATP), and decreased transendothelial resistance (TEER), suggesting loss of membrane integrity. Incubation of intact rat aorta (RA) or human saphenous vein in NS but not PL led to impaired endothelial-dependent relaxation which was ameliorated by apyrase (hydrolyzes ATP) or SB203580 (p38 MAPK inhibitor). Exposure of HSVEC to NS but not PL led to activation of p38 MAPK and its downstream substrate, MAPKAP kinase 2 (MK2). Treatment of HSVEC with exogenous ATP led to interleukin 1ß (IL-1ß) release and increased vascular cell adhesion molecule (VCAM) expression. Treatment of RA with IL-1ß led to impaired endothelial relaxation. IL-1ß treatment of HSVEC led to increases in p38 MAPK and MK2 phosphorylation, and increased levels of arginase II. Incubation of porcine saphenous vein (PSV) in PL with pH adjusted to 6.0 or less also led to impaired endothelial function, suggesting that the acidic nature of NS is what contributes to endothelial dysfunction. Volume overload resuscitation in a porcine model after hemorrhage with NS, but not PL, led to acidosis and impaired endothelial function. These data suggest that endothelial dysfunction caused by exposure to acidic, non-buffered NS is associated with loss of membrane integrity, release of ATP, and is modulated by P2X7R-mediated inflammatory responses.


Assuntos
Trifosfato de Adenosina/metabolismo , Membrana Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Inflamação/metabolismo , Solução Salina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Membrana Celular/metabolismo , Células Endoteliais/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Receptores Purinérgicos P2X7/metabolismo , Veia Safena/efeitos dos fármacos , Veia Safena/metabolismo , Suínos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...