Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mycology ; 11(2): 118-125, 2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-32923020

RESUMO

ASPERGILLUS FLAVUS: exploits diverse mechanisms to survive during exposure to antifungal agents including morphogenesis. Germination of dormant conidia involves cascades of reactions integrated into the signalling pathway. This study documents the effect of phytochemical-quercetin on A. flavus during germination of conidia using scanning electron microscopy (SEM). Significant inhibition of conidial swelling of A. flavus in comparison to control was observed at 4 and 7 h Quantitative real-time PCR for genes from calcium signalling pathway and heat-shock proteins family showed up-regulation of heat shock (Hsp70 and Hsp90) and calcium signalling pathway genes (calcium-transporting ATPase and calmodulin) in response to quercetin at initial 4 h in comparison to control sample whereas up-regulation of Hsp70, calcineurin and transcription factor Crz1, were observed in both the treated samples. Gene encoding for calcium-kinase, cAMP, Rho-gdp, Plc and Pkc showed a constitutively higher level of expression in quercetin-treated sample in comparison to control at both time points. These data showed a clear response from genes encoding calcineurin-Crz1 signalling pathways and may find its application in the screening of antifungal agents. ABBREVIATIONS: Hsp: Hear shock protein; MIC: Minimum Inhibitory Concentration; SEM: Scanning Electron Microscopy; qRT-PCR: Quantitative Real-Time Polymerase Chain Reaction.

2.
ACS Omega ; 5(17): 10077-10088, 2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32391495

RESUMO

Aspergillus fumigatus causes several nosocomial pulmonary infections and accounts for high morbidity and mortality rate globally. Among various virulence factors, 1,8-dihydroxynaphthalene-melanin plays an important role in the survival during unfavorable conditions both in vivo and in vitro, masks various molecular patterns associated with A. fumigatus, and protects it from the host immune system. In the present study, we aim to understand the potential of cis-9-hexadecenal as an antimelanogenic compound and its role in modulating other associated virulence factors in A. fumigatus. cis-9-Hexadecenal is a bioactive compound that belongs to C16 mono-unsaturated fatty-aldehyde groups. Minimum effective concentration of cis-9-hexadecenal affecting A. fumigatus melanin biosynthesis was determined using broth microdilution method. The spectrophotometric analysis revealed reduced melanin content (91%) and hydrophobicity (59%) at 0.293 mM of cis-9-hexadecenal. Cell surface organizational changes using electron microscopy showed altered demelanized smooth A. fumigatus conidial surface without any protrusions after cis-9-hexadecenal treatment. The transcript analysis of polyketide synthase (PKS) pksP/alb1 gene was quantified through qRT-PCR which revealed an upregulated expression. Total proteome profiling conducted through LC-MS-MS showed upregulated PKS enzyme but other downstream proteins involved in the 1,8-dihydroxynaphthalene-melanin biosynthesis pathway were absent. The homology modeling of PKS using Expasy's web server predicted that PKS is stable at varied conditions and is hydrophilic in nature. The Ramachandran plot by PROCHECK confirmed the 3-D structure of PKS to be reliable. Docking analysis using AutoDock-4.2.6 predicted the binding of cis-9-hexadecenal and PKS at Thr-264 and Ser-171 residue via hydrogen bonding at a low binding energy of -4.95 kcal/mol.

3.
BMC Complement Med Ther ; 20(1): 67, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32122336

RESUMO

BACKGROUND: Aspergillus fumigatus, an opportunistic fungal pathogen is associated with a wide array of diseases. It produces 1, 8-dihydroxy naphthalene (DHN) melanin that imparts greenish grey color to conidia and is an important virulence factor. It masks various molecular patterns associated with A. fumigatus and protects the fungus from host immune system. Myristica fragrans, enriched with secondary metabolites has been traditionally used for the treatment of infectious and inflammatory diseases. The present study was aimed to explore the anti-melanogenic effect of M. fragrans extracts on A. fumigatus. METHODS: M. fragrans extracts (hexane, chloroform, methanol and ethanol) were prepared through polarity guided extraction. Phytochemical analysis was performed to detect the chemical constituents of the extracts. The minimum effective concentration (MEC) of the extracts against A. fumigatus melanin was determined by broth micro-dilution assay. Various virulence factors were assayed by spectrophotometric methods. Electron microscopic studies were performed to evaluate the effect of the hexane extract of M. fragrans on A. fumigatus cell surface morphology. The major active compounds of the extract were detected by gas chromatography-mass spectrometry (GC-MS). Docking was performed to study the interaction between the major identified compounds and the ketosynthase domain of polyketide synthase protein. RESULTS: The results indicated that the hexane extract of M. fragrans inhibited melanin production (76.09%), reduced ergosterol content (83.63%) and hydrophobicity of the cell (72.2%) at the MEC of 0.078 mg/mL. Altered conidial surface, disappearance of protrusions and absence of melanin layer on outer cell surface was observed in electron microscopy. Forty-two compounds were identified by GC-MS. The main constituents were identified as sabinene (12.2%), linoleic acid (11.7%), hexadecanoic acid (10.5%), safrole (8.1%) and elemicin (7.8%). Docking studies revealed that hexadecanoic acid, its derivative compound cis-9-hexadecenal and isoeugenol have lower binding energy forming proper hydrogen bond with ketosynthase domain of polyketide synthase protein. CONCLUSION: The study concludes that the extract of M. fragrans has potential antifungal properties that can be explored in combination with available antifungals. This combination approach may be helpful for large number of patients suffering with A. fumigatus infections.


Assuntos
Antifúngicos/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Melaninas/antagonistas & inibidores , Myristica/química , Extratos Vegetais/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Índia , Testes de Sensibilidade Microbiana , Esporos Fúngicos/efeitos dos fármacos
4.
Artigo em Inglês | MEDLINE | ID: mdl-29896454

RESUMO

Aspergillus species are the major cause of health concern worldwide in immunocompromised individuals. Opportunistic Aspergilli cause invasive to allergic aspergillosis, whereas non-infectious Aspergilli have contributed to understand the biology of eukaryotic organisms and serve as a model organism. Morphotypes of Aspergilli such as conidia or mycelia/hyphae helped them to survive in favorable or unfavorable environmental conditions. These morphotypes contribute to virulence, pathogenicity and invasion into hosts by excreting proteins, enzymes or toxins. Morphological transition of Aspergillus species has been a critical step to infect host or to colonize on food products. Thus, we reviewed proteins from Aspergilli to understand the biological processes, biochemical, and cellular pathways that are involved in transition and morphogenesis. We majorly analyzed proteomic studies on A. fumigatus, A. flavus, A. terreus, and A. niger to gain insight into mechanisms involved in the transition from conidia to mycelia along with the role of secondary metabolites. Proteome analysis of morphotypes of Aspergilli provided information on key biological pathways required to exit conidial dormancy, consortia of virulent factors and mycotoxins during the transition. The application of proteomic approaches has uncovered the biological processes during development as well as intermediates of secondary metabolite biosynthesis pathway. We listed key proteins/ enzymes or toxins at different morphological types of Aspergillus that could be applicable in discovery of novel therapeutic targets or metabolite based diagnostic markers.


Assuntos
Aspergilose/microbiologia , Aspergillus/citologia , Aspergillus/metabolismo , Aspergillus/patogenicidade , Proteômica , Aspergillus/crescimento & desenvolvimento , Proteínas Fúngicas/metabolismo , Humanos , Hifas/citologia , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Hifas/patogenicidade , Micélio/citologia , Micélio/crescimento & desenvolvimento , Micélio/metabolismo , Micélio/patogenicidade , Micotoxinas/biossíntese , Proteoma/análise , Metabolismo Secundário , Esporos Fúngicos/citologia , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/metabolismo , Esporos Fúngicos/patogenicidade , Virulência , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...