Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Biol Res ; 56(1): 35, 2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37355658

RESUMO

BACKGROUND: High mountainous environments are of particular interest as they play an essential role for life and human societies, while being environments which are highly vulnerable to climate change and land use intensification. Despite this, our knowledge of high mountain soils in South America and their microbial community structure is strikingly scarce, which is of more concern considering the large population that depends on the ecosystem services provided by these areas. Conversely, the Central Andes, located in the Mediterranean region of Chile, has long been studied for its singular flora, whose diversity and endemism has been attributed to the particular geological history and pronounced environmental gradients in short distances. Here, we explore soil properties and microbial community structure depending on drainage class in a well-preserved Andean valley on the lower alpine vegetation belt (~2500 m a.s.l.) at 33.5˚S. This presents an opportunity to determine changes in the overall bacterial community structure across different types of soils and their distinct layers in a soil depth profile of a highly heterogeneous environment. METHODS: Five sites closely located (<1.5 km) and distributed in a well preserved Andean valley on the lower alpine vegetation belt (~2500 m a.s.l.) at 33.5˚S were selected based on a pedological approach taking into account soil types, drainage classes and horizons. We analyzed 113 soil samples using high-throughput sequencing of the 16S rRNA gene to describe bacterial abundance, taxonomic composition, and co-occurrence networks. RESULTS: Almost 18,427 Amplicon Sequence Variant (ASVs) affiliated to 55 phyla were detected. The bacterial community structure within the same horizons were very similar validating the pedological sampling approach. Bray-Curtis dissimilarity analysis revealed that the structure of bacterial communities in superficial horizons (topsoil) differed from those found in deep horizons (subsoil) in a site-specific manner. However, an overall closer relationship was observed between topsoil as opposed to between subsoil microbial communities. Alpha diversity of soil bacterial communities was higher in topsoil, which also showed more bacterial members interacting and with higher average connectivity compared to subsoils. Finally, abundances of specific taxa could be considered as biological markers in the transition from topsoil to subsoil horizons, like Fibrobacterota, Proteobacteria, Bacteroidota for shallower soils and Chloroflexi, Latescibacterota and Nitrospirota for deeper soils. CONCLUSIONS: The results indicate the importance of the soil drainage conditions for the bacterial community composition, suggesting that information of both structure and their possible ecological relationships, might be useful in clarifying the location of the edge of the topsoil-subsoil transition in mountainous environments.


Assuntos
Bactérias , Microbiota , Humanos , RNA Ribossômico 16S/genética , Bactérias/genética , Solo/química , Proteobactérias/genética , Microbiologia do Solo
2.
Environ Microbiome ; 18(1): 24, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36978149

RESUMO

BACKGROUND: Soil microorganisms are in constant interaction with plants, and these interactions shape the composition of soil bacterial communities by modifying their environment. However, little is known about the relationship between microorganisms and native plants present in extreme environments that are not affected by human intervention. Using high-throughput sequencing in combination with random forest and co-occurrence network analyses, we compared soil bacterial communities inhabiting the rhizosphere surrounding soil (RSS) and the corresponding bulk soil (BS) of 21 native plant species organized into three vegetation belts along the altitudinal gradient (2400-4500 m a.s.l.) of the Talabre-Lejía transect (TLT) in the slopes of the Andes in the Atacama Desert. We assessed how each plant community influenced the taxa, potential functions, and ecological interactions of the soil bacterial communities in this extreme natural ecosystem. We tested the ability of the stress gradient hypothesis, which predicts that positive species interactions become increasingly important as stressful conditions increase, to explain the interactions among members of TLT soil microbial communities. RESULTS: Our comparison of RSS and BS compartments along the TLT provided evidence of plant-specific microbial community composition in the RSS and showed that bacterial communities modify their ecological interactions, in particular, their positive:negative connection ratios in the presence of plant roots at each vegetation belt. We also identified the taxa driving the transition of the BS to the RSS, which appear to be indicators of key host-microbial relationships in the rhizosphere of plants in response to different abiotic conditions. Finally, the potential functions of the bacterial communities also diverge between the BS and the RSS compartments, particularly in the extreme and harshest belts of the TLT. CONCLUSIONS: In this study, we identified taxa of bacterial communities that establish species-specific relationships with native plants and showed that over a gradient of changing abiotic conditions, these relationships may also be plant community specific. These findings also reveal that the interactions among members of the soil microbial communities do not support the stress gradient hypothesis. However, through the RSS compartment, each plant community appears to moderate the abiotic stress gradient and increase the efficiency of the soil microbial community, suggesting that positive interactions may be context dependent.

3.
Biol Res ; 56(1): 6, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36797803

RESUMO

BACKGROUND: Despite representing the largest fraction of animal life, the number of insect species whose genome has been sequenced is barely in the hundreds. The order Dermaptera (the earwigs) suffers from a lack of genomic information despite its unique position as one of the basally derived insect groups and its importance in agroecosystems. As part of a national educational and outreach program in genomics, a plan was formulated to engage the participation of high school students in a genome sequencing project. Students from twelve schools across Chile were instructed to capture earwig specimens in their geographical area, to identify them and to provide material for genome sequencing to be carried out by themselves in their schools. RESULTS: The school students collected specimens from two cosmopolitan earwig species: Euborellia annulipes (Fam. Anisolabididae) and Forficula auricularia (Fam. Forficulidae). Genomic DNA was extracted and, with the help of scientific teams that traveled to the schools, was sequenced using nanopore sequencers. The sequence data obtained for both species was assembled and annotated. We obtained genome sizes of 1.18 Gb (F. auricularia) and 0.94 Gb (E. annulipes) with the number of predicted protein coding genes being 31,800 and 40,000, respectively. Our analysis showed that we were able to capture a high percentage (≥ 93%) of conserved proteins indicating genomes that are useful for comparative and functional analysis. We were also able to characterize structural elements such as repetitive sequences and non-coding RNA genes. Finally, functional categories of genes that are overrepresented in each species suggest important differences in the process underlying the formation of germ cells, and modes of reproduction between them, features that are one of the distinguishing biological properties that characterize these two distant families of Dermaptera. CONCLUSIONS: This work represents an unprecedented instance where the scientific and lay community have come together to collaborate in a genome sequencing project. The versatility and accessibility of nanopore sequencers was key to the success of the initiative. We were able to obtain full genome sequences of two important and widely distributed species of insects which had not been analyzed at this level previously. The data made available by the project should illuminate future studies on the Dermaptera.


Assuntos
Insetos , Animais , Insetos/genética , Análise de Sequência de DNA , Chile
4.
Biol. Res ; 56: 6-6, 2023. ilus, tab, graf
Artigo em Inglês | LILACS | ID: biblio-1429907

RESUMO

BACKGROUND: Despite representing the largest fraction of animal life, the number of insect species whose genome has been sequenced is barely in the hundreds. The order Dermaptera (the earwigs) suffers from a lack of genomic information despite its unique position as one of the basally derived insect groups and its importance in agroecosystems. As part of a national educational and outreach program in genomics, a plan was formulated to engage the participation of high school students in a genome sequencing project. Students from twelve schools across Chile were instructed to capture earwig specimens in their geographical area, to identify them and to provide material for genome sequencing to be carried out by themselves in their schools. RESULTS: The school students collected specimens from two cosmopolitan earwig species: Euborellia annulipes (Fam. Anisolabididae) and Forficula auricularia (Fam. Forficulidae). Genomic DNA was extracted and, with the help of scientific teams that traveled to the schools, was sequenced using nanopore sequencers. The sequence data obtained for both species was assembled and annotated. We obtained genome sizes of 1.18 Gb (F. auricularia) and 0.94 Gb (E. annulipes) with the number of predicted protein coding genes being 31,800 and 40,000, respectively. Our analysis showed that we were able to capture a high percentage (≥ 93%) of conserved proteins indicating genomes that are useful for comparative and functional analysis. We were also able to characterize structural elements such as repetitive sequences and non-coding RNA genes. Finally, functional categories of genes that are overrepresented in each species suggest important differences in the process underlying the formation of germ cells, and modes of reproduction between them, features that are one of the distinguishing biological properties that characterize these two distant families of Dermaptera. CONCLUSIONS: This work represents an unprecedented instance where the scientific and lay community have come together to collaborate in a genome sequencing project. The versatility and accessibility of nanopore sequencers was key to the success of the initiative. We were able to obtain full genome sequences of two important and widely distributed species of insects which had not been analyzed at this level previously. The data made available by the project should illuminate future studies on the Dermaptera.


Assuntos
Animais , Insetos/genética , Chile , Análise de Sequência de DNA
5.
Genomics ; 114(1): 305-315, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34954349

RESUMO

Orestias ascotanensis (Cyprinodontidae) is a teleost pupfish endemic to springs feeding into the Ascotan saltpan in the Chilean Altiplano (3,700 m.a.s.l.) and represents an opportunity to study adaptations to high-altitude aquatic environments. We have de novo assembled the genome of O. ascotanensis at high coverage. Comparative analysis of the O. ascotanensis genome showed an overall process of contraction, including loss of genes related to G-protein signaling, chemotaxis and signal transduction, while there was expansion of gene families associated with microtubule-based movement and protein ubiquitination. We identified 818 genes under positive selection, many of which are involved in DNA repair. Additionally, we identified novel and conserved microRNAs expressed in O. ascotanensis and its closely-related species, Orestias gloriae. Our analysis suggests that positive selection and expansion of genes that preserve genome stability are a potential adaptive mechanism to cope with the increased solar UV radiation to which high-altitude animals are exposed to.


Assuntos
Fundulidae , Peixes Listrados , Adaptação Fisiológica/genética , Altitude , Animais , Fundulidae/genética , Peixes Listrados/genética , Filogenia , Transcriptoma
6.
Front Plant Sci ; 12: 688533, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34326856

RESUMO

Since drought is the leading environmental factor limiting crop productivity, and plants have a significant impact in defining the assembly of plant-specific microbial communities associated with roots, we aimed to determine the effect of thoroughly selected water deficit tolerant and susceptible Solanum lycopersicum cultivars on their rhizosphere microbiome and compared their response with plant-free soil microbial communities. We identified a total of 4,248 bacterial and 276 fungal different operational taxonomic units (OTUs) in soils by massive sequencing. We observed that tomato cultivars significantly affected the alpha and beta diversity of their bacterial rhizosphere communities but not their fungal communities compared with bulk soils (BSs), showing a plant effect exclusively on the bacterial soil community. Also, an increase in alpha diversity in response to water deficit of both bacteria and fungi was observed in the susceptible rhizosphere (SRz) but not in the tolerant rhizosphere (TRz) cultivar, implying a buffering effect of the tolerant cultivar on its rhizosphere microbial communities. Even though water deficit did not affect the microbial diversity of the tolerant cultivar, the interaction network analysis revealed that the TRz microbiota displayed the smallest and least complex soil network in response to water deficit with the least number of connected components, nodes, and edges. This reduction of the TRz network also correlated with a more efficient community, reflected in increased cooperation within kingdoms. Furthermore, we identified some specific bacteria and fungi in the TRz in response to water deficit, which, given that they belong to taxa with known beneficial characteristics for plants, could be contributing to the tolerant phenotype, highlighting the metabolic bidirectionality of the holobiont system. Future assays involving characterization of root exudates and exchange of rhizospheres between drought-tolerant and susceptible cultivars could determine the effect of specific metabolites on the microbiome community and may elucidate their functional contribution to the tolerance of plants to water deficit.

7.
J Trace Elem Med Biol ; 53: 113-119, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30910193

RESUMO

The independent toxic effects of copper and acetaminophen are among the most studied topics in liver toxicity. Here, in an animal model of Cebus capucinus chronically exposed to high dietary copper, we assessed clinical and global transcriptional adaptations of the liver induced by a single high dose of acetaminophen. The experiment conditions were chosen to resemble a close to human real-life situation of exposure to both toxic stimuli. The clinical parameters and histological analyses indicated that chronic copper administration does not induce liver damage and may have a protective effect in acetaminophen challenge. Acetaminophen administration in previously non-exposed animals induced down-regulation of a complex network of gene regulators, highlighting the putative participation of the families of gene regulators HNF, FOX, PPAR and NRF controlling this process. This gene response was not observed in animals that previously received chronic oral copper, suggesting that this metal induces a transcriptional adaptation that may protect against acetaminophen toxicity, a classical adaptation response termed preconditioning of the liver.


Assuntos
Acetaminofen/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Cobre/administração & dosagem , Cobre/farmacologia , Substâncias Protetoras/farmacologia , Animais , Cebus , Modelos Animais de Doenças , Substâncias Protetoras/administração & dosagem
8.
Sci Rep ; 9(1): 2132, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30765821

RESUMO

Whole human genome sequencing initiatives help us understand population history and the basis of genetic diseases. Current data mostly focuses on Old World populations, and the information of the genomic structure of Native Americans, especially those from the Southern Cone is scant. Here we present annotation and variant discovery from high-quality complete genome sequences of a cohort of 11 Mapuche-Huilliche individuals (HUI) from Southern Chile. We found approximately 3.1 × 106 single nucleotide variants (SNVs) per individual and identified 403,383 (6.9%) of novel SNVs events. Analyses of large-scale genomic events detected 680 copy number variants (CNVs) and 4,514 structural variants (SVs), including 398 and 1,910 novel events, respectively. Global ancestry composition of HUI genomes revealed that the cohort represents a sample from a marginally admixed population from the Southern Cone, whose main genetic component derives from Native American ancestors. Additionally, we found that HUI genomes contain variants in genes associated with 5 of the 6 leading causes of noncommunicable diseases in Chile, which may have an impact on the risk of prevalent diseases in Chilean and Amerindian populations. Our data represents a useful resource that can contribute to population-based studies and for the design of early diagnostics or prevention tools for Native and admixed Latin American populations.


Assuntos
Etnicidade/genética , Marcadores Genéticos , Genética Populacional , Genoma Humano , Genômica/métodos , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Chile , Estudos de Coortes , Variações do Número de Cópias de DNA , Feminino , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
9.
Evodevo ; 9: 13, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29796243

RESUMO

BACKGROUND: In the last few years, accumulated information has indicated that the evolution of an extra-embryonic membrane in dipterans was accompanied by changes in the gene regulatory network controlled by the BMP/Dpp pathway, which is responsible for dorsal patterning in these insects. However, only comparative analysis of gene expression levels between distant species with two extra-embryonic membranes, like A. gambiae or C. albipunctata, and D. melanogaster, has been conducted. Analysis of gene expression in ancestral species, which evolved closer to the amnioserosa origin, could provide new insights into the evolution of dorsoventral patterning in dipterans. RESULTS: Here we describe the spatial expression of several key and downstream elements of the Dpp pathway and show the compared patterns of expression between Musca and Drosophila embryos, both dipterans with amnioserosa. Most of the analyzed gene showed a high degree of expression conservation, however, we found several differences in the gene expression pattern of M. domestica orthologs for sog and tolloid. Bioinformatics analysis of the promoter of both genes indicated that the variations could be related to the gain of several binding sites for the transcriptional factor Dorsal in the Md.tld promoter and Snail in the Md.sog enhancer. These altered expressions could explain the unclear formation of the pMad gradient in the M. domestica embryo, compared to the formation of the gradient in D. melanogaster. CONCLUSION: Gene expression changes during the dorsal-ventral patterning in insects contribute to the differentiation of extra-embryonic tissues as a consequence of changes in the gene regulatory network controlled by BMP/Dpp. In this work, in early M. domestica embryos, we identified the expression pattern of several genes members involved in the dorsoventral specification of the embryo. We believe that these data can contribute to understanding the evolution of the BMP/Dpp pathway, the regulation of BMP ligands, and the formation of a Dpp gradient in higher cyclorraphan flies.

10.
J Cell Biochem ; 119(9): 7657-7666, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29806713

RESUMO

Long noncoding RNAs (lncRNAs) are a heterogeneous class of transcripts, longer than 200 nucleotides, 5'-capped, polyadenylated, and poorly conserved among mammalian species. Several studies have shown the contribution of lncRNAs to different cellular processes, including regulation of the chromatin structure, control of messenger RNA translation, regulation of gene transcription, regulation of embryonic pluripotency, and differentiation. Although limited numbers of functional lncRNAs have been identified so far, the immense regulatory potential of these RNAs is already evident, indicating that a functional characterization of lncRNAs is needed. In this study, mouse preosteoblastic cells were induced to differentiate into osteoblasts. At 3 sequential differentiation stages, total RNA was isolated and libraries were constructed for Illumina sequencing. The resulting sequences were aligned and transcript abundances were determined. New lncRNA candidates that displayed differential expression patterns during osteoblast differentiation were identified by combining bioinformatics and reverse transcription polymerase chain reaction analyses. Among these, lncRNA-1 that exhibited increased expression during osteogenesis and was downregulated during myogenesis. Importantly, knockdown of lncRNA-1 expression in primary mouse preosteoblasts was found to inhibit osteogenic differentiation, reflected by a reduced transcription of the Runx2/p57 and Sp7 bone master genes. Together, our results indicate that lncRNA-1 represents a new regulatory RNA that plays a relevant role during the early stages of osteogenesis.


Assuntos
Perfilação da Expressão Gênica/métodos , Osteoblastos/citologia , Osteogênese , RNA Longo não Codificante/genética , Animais , Diferenciação Celular , Linhagem Celular , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Desenvolvimento Muscular , Especificidade de Órgãos , Osteoblastos/química , Análise de Sequência de RNA/métodos , Regulação para Cima
11.
Bioresour Technol ; 218: 659-66, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27416516

RESUMO

This work presents the molecular foundation of a consortium of five efficient bacteria strains isolated from copper mines currently used in state of the art industrial-scale biotechnology. The strains Acidithiobacillus thiooxidans Licanantay, Acidiphilium multivorum Yenapatur, Leptospirillum ferriphilum Pañiwe, Acidithiobacillus ferrooxidans Wenelen and Sulfobacillus thermosulfidooxidans Cutipay were selected for genome sequencing based on metal tolerance, oxidation activity and bioleaching of copper efficiency. An integrated model of metabolic pathways representing the bioleaching capability of this consortium was generated. Results revealed that greater efficiency in copper recovery may be explained by the higher functional potential of L. ferriphilum Pañiwe and At. thiooxidans Licanantay to oxidize iron and reduced inorganic sulfur compounds. The consortium had a greater capacity to resist copper, arsenic and chloride ion compared to previously described biomining strains. Specialization and particular components in these bacteria provided the consortium a greater ability to bioleach copper sulfide ores.


Assuntos
Acidithiobacillus thiooxidans/metabolismo , Acidithiobacillus/metabolismo , Cobre/isolamento & purificação , Metagenoma , Consórcios Microbianos , Bactérias/metabolismo , Ferro/metabolismo , Metais/metabolismo , Oxirredução , Sulfetos/metabolismo , Compostos de Enxofre/metabolismo
12.
Gene ; 591(1): 191-200, 2016 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-27397649

RESUMO

In the early Drosophila melanogaster embryo, the gene regulatory network controlled by Dpp signaling is involved in the subdivision of dorsal ectoderm into the presumptive dorsal epidermis and amnioserosa. In this work, we aimed to identify new Dpp downstream targets involved in dorsal ectoderm patterning. We used oligonucleotide D. melanogaster microarrays to identify the set of genes that are differential expressed between wild type embryos and embryos that overexpress Dpp (nos-Gal4>UAS-dpp) during early stages of embryo development. By using this approach, we identified 358 genes whose relative abundance significantly increased in response to Dpp overexpression. Among them, we found the entire set of known Dpp target genes that function in dorsal ectoderm patterning (zen, doc, hnt, pnr, ush, tup, and others) in addition to several up-regulated genes of unknown functions. Spatial expression pattern of up-regulated genes in response to Dpp overexpression as well as their opposing transcriptional responses to Dpp loss- and gain-of-function indicated that they are new candidate target genes of Dpp signaling pathway. We further analyse one of the candidate genes, CG13653, which is expressed at the dorsal-most cells of the embryo during a restricted period of time. CG13653 orthologs were not detected in basal lineages of Dipterans, which unlike D. melanogaster develop two extra-embryonic membranes, amnion and serosa. We characterized the enhancer region of CG13653 and revealed that CG13653 is directly regulated by Dpp signaling pathway.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Embrião não Mamífero/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Transdução de Sinais/genética , Animais , Pareamento de Bases/genética , Sequência de Bases , Proteínas de Drosophila/metabolismo , Desenvolvimento Embrionário/genética , Elementos Facilitadores Genéticos/genética , Genes de Insetos , Mutação/genética , Análise de Sequência com Séries de Oligonucleotídeos , Reprodutibilidade dos Testes
13.
Toxicon ; 108: 19-31, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26410112

RESUMO

Philodryas chamissonis is a rear-fanged snake endemic to Chile. Its bite produces mild to moderate symptoms with proteolytic and anti-coagulant effects. Presently, the composition of the venom, as well as, the biochemical and structural characteristics of its toxins, remains unknown. In this study, we cloned and reported the first full-length sequences of five toxin-encoding genes from the venom gland of this species: Type III snake venom metalloprotease (SVMP), snake venom serine protease (SVSP), Cysteine-rich secretory protein (CRISP), α and ß subunits of C-type lectin-like protein (CLP) and C-type natriuretic peptide (NP). These genes are highly expressed in the venom gland and their sequences exhibited a putative signal peptide, suggesting that these are components of the venom. These putative toxins had different evolutionary relationships with those reported for some front-fanged snakes, being SVMP, SVSP and CRISP of P. chamissonis closely related to the toxins present in Elapidae species, while NP was more related to those of Viperidae species. In addition, analyses suggest that the α and ß subunits of CLP of P. chamissonis might have a α-subunit scaffold in common with Viperidae species, whose highly variable C-terminal region might have allowed the diversification in α and ß subunits. Our results provide the first molecular description of the toxins possibly implicated in the envenomation of prey and humans by the bite of P. chamissonis.


Assuntos
Venenos de Serpentes/química , Sequência de Aminoácidos , Animais , Clonagem Molecular , Camundongos , Estrutura Terciária de Proteína , Alinhamento de Sequência , Análise de Sequência de DNA , Análise de Sequência de Proteína , Venenos de Serpentes/genética , Venenos de Serpentes/toxicidade , Serpentes/genética , Serpentes/metabolismo
14.
BMC Genomics ; 16: 495, 2015 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-26141111

RESUMO

BACKGROUND: Piscirickettsiosis or Salmonid Rickettsial Septicaemia (SRS) is a bacterial disease that has a major economic impact on the Chilean salmon farming industry. Despite the fact that Piscirickettsia salmonis has been recognized as a major fish pathogen for over 20 years, the molecular strategies underlying the fish response to infection and the bacterial mechanisms of pathogenesis are poorly understood. We analysed and compared the head kidney transcriptional response of Atlantic salmon (Salmo salar) families with different levels of susceptibility to P. salmonis infection in order to reveal mechanisms that might confer infection resistance. RESULTS: We ranked forty full-sibling Atlantic salmon families according to accumulated mortality after a challenge with P. salmonis and selected the families with the lowest and highest cumulative mortalities for microarray gene expression analysis. A comparison of the response to P. salmonis infection between low and high susceptibility groups identified biological processes presumably involved in natural resistance to the pathogen. In particular, expression changes of genes linked to cellular iron depletion, as well as low iron content and bacterial load in the head kidney of fish from low susceptibility families, suggest that iron-deprivation is an innate immunity defence mechanism against P. salmonis. To complement these results, we predicted a set of iron acquisition genes from the P. salmonis genome. Identification of putative Fur boxes and expression of the genes under iron-depleted conditions revealed that most of these genes form part of the Fur regulon of P. salmonis. CONCLUSIONS: This study revealed, for the first time, differences in the transcriptional response to P. salmonis infection among Atlantic salmon families with varied levels of susceptibility to the infection. These differences correlated with changes in the abundance of transcripts encoding proteins directly and indirectly involved in the immune response; changes that highlighted the role of nutritional immunity through iron deprivation in host defence mechanisms against P. salmonis. Additionally, we found that P. salmonis has several mechanisms for iron acquisition, suggesting that this bacterium can obtain iron from different sources, including ferric iron through capturing endogenous and exogenous siderophores and ferrous iron. Our results contribute to determining the underlying resistance mechanisms of Atlantic salmon to P. salmonis infection and to identifying future treatment strategies.


Assuntos
Doenças dos Peixes/genética , Ferro/metabolismo , Piscirickettsia/patogenicidade , Infecções por Piscirickettsiaceae/genética , Salmo salar/genética , Salmo salar/microbiologia , Transcrição Gênica/genética , Animais , Suscetibilidade a Doenças/metabolismo , Suscetibilidade a Doenças/microbiologia , Doenças dos Peixes/metabolismo , Doenças dos Peixes/microbiologia , Expressão Gênica/genética , Dados de Sequência Molecular , Infecções por Piscirickettsiaceae/metabolismo , Infecções por Piscirickettsiaceae/microbiologia , Salmo salar/metabolismo
15.
Gene ; 535(2): 210-7, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24321690

RESUMO

In the early Drosophila melanogaster embryo, Dpp, a secreted molecule that belongs to the TGF-ß superfamily of growth factors, activates a set of downstream genes to subdivide the dorsal region into amnioserosa and dorsal epidermis. Here, we examined the expression pattern and transcriptional regulation of Dtg, a new target gene of Dpp signaling pathway that is required for proper amnioserosa differentiation. We showed that the expression of Dtg was controlled by Dpp and characterized a 524-bp enhancer that mediated expression in the dorsal midline, as well as, in the differentiated amnioserosa in transgenic reporter embryos. This enhancer contained a highly conserved region of 48-bp in which bioinformatic predictions and in vitro assays identified three Mad binding motifs. Mutational analysis revealed that these three motifs were necessary for proper expression of a reporter gene in transgenic embryos, suggesting that short and highly conserved genomic sequences may be indicative of functional regulatory regions in D. melanogaster genes. Dtg orthologs were not detected in basal lineages of Dipterans, which unlike D. melanogaster develop two extra-embryonic membranes, amnion and serosa, nevertheless Dtg orthologs were identified in the transcriptome of Musca domestica, in which dorsal ectoderm patterning leads to the formation of a single extra-embryonic membrane. These results suggest that Dtg was recruited as a new component of the network that controls dorsal ectoderm patterning in the lineage leading to higher Cyclorrhaphan flies, such as D. melanogaster and M. domestica.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Membrana/genética , Transdução de Sinais , Animais , Sequência de Bases , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Embrião não Mamífero , Elementos Facilitadores Genéticos , Ligação Proteica , Alinhamento de Sequência , Especificidade da Espécie
16.
BMC Genomics ; 13: 2, 2012 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-22214306

RESUMO

BACKGROUND: The increasing number of developmental events and molecular mechanisms associated with the Hedgehog (Hh) pathway from Drosophila to vertebrates, suggest that gene regulation is crucial for diverse cellular responses, including target genes not yet described. Although several high-throughput, genome-wide approaches have yielded information at the genomic, transcriptional and proteomic levels, the specificity of Gli binding sites related to direct target gene activation still remain elusive. This study aims to identify novel putative targets of Gli transcription factors through a protein-DNA binding assay using yeast, and validating a subset of targets both in-vitro and in-vivo. Testing in different Hh/Gli gain- and loss-of-function scenarios we here identified known (e.g., ptc1) and novel Hh-regulated genes in zebrafish embryos. RESULTS: The combined yeast-based screening and MEME/MAST analysis were able to predict Gli transcription factor binding sites, and position mapping of these sequences upstream or in the first intron of promoters served to identify new putative target genes of Gli regulation. These candidates were validated by qPCR in combination with either the pharmacological Hh/Gli antagonist cyc or the agonist pur in Hh-responsive C3H10T1/2 cells. We also used small-hairpin RNAs against Gli proteins to evaluate targets and confirm specific Gli regulation their expression. Taking advantage of mutants that have been identified affecting different components of the Hh/Gli signaling system in the zebrafish model, we further analyzed specific novel candidates. Studying Hh function with pharmacological inhibition or activation complemented these genetic loss-of-function approaches. We provide evidence that in zebrafish embryos, Hh signaling regulates sfrp2, neo1, and c-myc expression in-vivo. CONCLUSION: A recently described yeast-based screening allowed us to identify new Hh/Gli target genes, functionally important in different contexts of vertebrate embryonic development.


Assuntos
Técnicas Genéticas , Proteínas Hedgehog/metabolismo , Proteínas Oncogênicas/metabolismo , Saccharomyces cerevisiae , Transativadores/metabolismo , Animais , Linhagem Celular , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Técnicas Genéticas/normas , Proteínas Hedgehog/agonistas , Proteínas de Membrana/metabolismo , Camundongos , Proteínas Oncogênicas/antagonistas & inibidores , Proteínas Oncogênicas/genética , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-myc/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Transativadores/antagonistas & inibidores , Transativadores/genética , Alcaloides de Veratrum/farmacologia , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/metabolismo , Proteína GLI1 em Dedos de Zinco
17.
Biometals ; 25(1): 75-93, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21830017

RESUMO

Acidithiobacillus ferrooxidans is a chemolithoautotrophic acidophilic bacterium that obtains its energy from the oxidation of ferrous iron, elemental sulfur, or reduced sulfur minerals. This capability makes it of great industrial importance due to its applications in biomining. During the industrial processes, A. ferrooxidans survives to stressing circumstances in its environment, such as an extremely acidic pH and high concentration of transition metals. In order to gain insight into the organization of A. ferrooxidans regulatory networks and to provide a framework for further studies in bacterial growth under extreme conditions, we applied a genome-wide annotation procedure to identify 87 A. ferrooxidans transcription factors. We classified them into 19 families that were conserved among diverse prokaryotic phyla. Our annotation procedure revealed that A. ferrooxidans genome contains several members of the ArsR and MerR families, which are involved in metal resistance and detoxification. Analysis of their sequences revealed known and potentially new mechanism to coordinate gene-expression in response to metal availability. A. ferrooxidans inhabit some of the most metal-rich environments known, thus transcription factors identified here seem to be good candidates for functional studies in order to determine their physiological roles and to place them into A. ferrooxidans transcriptional regulatory networks.


Assuntos
Acidithiobacillus/genética , Acidithiobacillus/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Metais/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Sítios de Ligação , Proteínas de Ligação a DNA/classificação , Proteínas de Ligação a DNA/genética , Homeostase , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Fatores de Transcrição/classificação , Fatores de Transcrição/genética
18.
BMC Genomics ; 11: 348, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20515496

RESUMO

BACKGROUND: The importance of in silico predictions for understanding cellular processes is now widely accepted, and a variety of algorithms useful for studying different biological features have been designed. In particular, the prediction of cis regulatory modules in non-coding human genome regions represents a major challenge for understanding gene regulation in several diseases. Recently, studies of the Wnt signaling pathway revealed a connection with neurodegenerative diseases such as Alzheimer's. In this article, we construct a classification tool that uses the transcription factor binding site motifs composition of some gene promoters to identify new Wnt/beta-catenin pathway target genes potentially involved in brain diseases. RESULTS: In this study, we propose 89 new Wnt/beta-catenin pathway target genes predicted in silico by using a method based on multiple Classification and Regression Tree (CART) analysis. We used as decision variables the presence of transcription factor binding site motifs in the upstream region of each gene. This prediction was validated by RT-qPCR in a sample of 9 genes. As expected, LEF1, a member of the T-cell factor/lymphoid enhancer-binding factor family (TCF/LEF1), was relevant for the classification algorithm and, remarkably, other factors related directly or indirectly to the inflammatory response and amyloidogenic processes also appeared to be relevant for the classification. Among the 89 new Wnt/beta-catenin pathway targets, we found a group expressed in brain tissue that could be involved in diverse responses to neurodegenerative diseases, like Alzheimer's disease (AD). These genes represent new candidates to protect cells against amyloid beta toxicity, in agreement with the proposed neuroprotective role of the Wnt signaling pathway. CONCLUSIONS: Our multiple CART strategy proved to be an effective tool to identify new Wnt/beta-catenin pathway targets based on the study of their regulatory regions in the human genome. In particular, several of these genes represent a new group of transcriptional dependent targets of the canonical Wnt pathway. The functions of these genes indicate that they are involved in pathophysiology related to Alzheimer's disease or other brain disorders.


Assuntos
Genoma Humano/genética , Genômica/métodos , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Motivos de Aminoácidos , Inteligência Artificial , Sítios de Ligação , Humanos , Reprodutibilidade dos Testes , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo
19.
BMC Biol ; 7: 61, 2009 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-19772636

RESUMO

BACKGROUND: Morphogenetic events that shape the Drosophila melanogaster embryo are tightly controlled by a genetic program in which specific sets of genes are up-regulated. We used a suppressive subtractive hybridization procedure to identify a group of developmentally regulated genes during early stages of D. melanogaster embryogenesis. We studied the spatiotemporal activity of these genes in five different intervals covering 12 stages of embryogenesis. RESULTS: Microarrays were constructed to confirm induction of expression and to determine the temporal profile of isolated subtracted cDNAs during embryo development. We identified a set of 118 genes whose expression levels increased significantly in at least one developmental interval compared with a reference interval. Of these genes, 53% had a phenotype and/or molecular function reported in the literature, whereas 47% were essentially uncharacterized. Clustering analysis revealed demarcated transcript groups with maximum gene activity at distinct developmental intervals. In situ hybridization assays were carried out on 23 uncharacterized genes, 15 of which proved to have spatiotemporally restricted expression patterns. Among these 15 uncharacterized genes, 13 were found to encode putative secreted and transmembrane proteins. For three of them we validated our protein sequence predictions by expressing their cDNAs in Drosophila S2R+ cells and analyzed the subcellular distribution of recombinant proteins. We then focused on the functional characterization of the gene CG6234. Inhibition of CG6234 by RNA interference resulted in morphological defects in embryos, suggesting the involvement of this gene in germ band retraction. CONCLUSION: Our data have yielded a list of developmentally regulated D. melanogaster genes and their expression profiles during embryogenesis and provide new information on the spatiotemporal expression patterns of several uncharacterized genes. In particular, we recovered a substantial number of unknown genes encoding putative secreted and transmembrane proteins, suggesting new components of signaling pathways that might be incorporated within the existing regulatory networks controlling D. melanogaster embryogenesis. These genes are also good candidates for additional targeted functional analyses similar to those we conducted for CG6234.See related minireview by Vichas and Zallen: http://www.jbiol.com/content/8/8/76.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Membrana/genética , Animais , Análise por Conglomerados , Proteínas de Drosophila/metabolismo , Embrião não Mamífero/metabolismo , Biblioteca Gênica , Proteínas de Membrana/metabolismo , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Frações Subcelulares/metabolismo , Fatores de Tempo , Regulação para Cima/genética
20.
Biochem Biophys Res Commun ; 382(4): 740-4, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19318086

RESUMO

Amyloid precursor protein (APP) is a transmembrane glycoprotein widely expressed in mammalian tissues and plays a central role in Alzheimer's disease. However, its physiological function remains elusive. Cu(2+) binding and reduction activities have been described in the extracellular APP135-156 region, which might be relevant for cellular copper uptake and homeostasis. Here, we assessed Cu(2+) reduction and (64)Cu uptake in two human HEK293 cell lines overexpressing APP. Our results indicate that Cu(2+) reduction increased and cells accumulated larger levels of copper, maintaining cell viability at supra-physiological levels of Cu(2+) ions. Moreover, wild-type cells exposed to both Cu(2+) ions and APP135-155 synthetic peptides increased copper reduction and uptake. Complementation of function studies in human APP751 transformed Fre1 defective Saccharomyces cerevisiae cells rescued low Cu(2+) reductase activity and increased (64)Cu uptake. We conclude that Cu(2+) reduction activity of APP facilitates copper uptake and may represent an early step in cellular copper homeostasis.


Assuntos
Precursor de Proteína beta-Amiloide/biossíntese , Cobre/metabolismo , Cobre/toxicidade , Linhagem Celular , Cobre/análise , Homeostase/efeitos dos fármacos , Humanos , Oxirredução/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...