Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37961535

RESUMO

Extracellular vesicles (EVs) are generated by all cells and systemic administration of allogenic EVs derived from epithelial and mesenchymal cells have been shown to be safe, despite carrying an array of functional molecules, including thousands of proteins. To address whether epithelial cells derived EVs can be modified to acquire the capacity to induce immune response, we engineered 293T EVs to harbor the immunomodulatory CD80, OX40L and PD-L1 molecules. We demonstrated abundant levels of these proteins on the engineered cells and EVs. Functionally, the engineered EVs efficiently elicit positive and negative co-stimulation in human and murine T cells. In the setting of cancer and auto-immune hepatitis, the engineered EVs modulate T cell functions and alter disease progression. Moreover, OX40L EVs provide additional benefit to anti-CTLA-4 treatment in melanoma-bearing mice. Our work provides evidence that epithelial cell derived EVs can be engineered to induce immune responses with translational potential to modulate T cell functions in distinct pathological settings.

2.
Nucleic Acids Res ; 51(4): 1859-1879, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36727461

RESUMO

Altered eIF4A1 activity promotes translation of highly structured, eIF4A1-dependent oncogene mRNAs at root of oncogenic translational programmes. It remains unclear how these mRNAs recruit and activate eIF4A1 unwinding specifically to facilitate their preferential translation. Here, we show that single-stranded RNA sequence motifs specifically activate eIF4A1 unwinding allowing local RNA structural rearrangement and translation of eIF4A1-dependent mRNAs in cells. Our data demonstrate that eIF4A1-dependent mRNAs contain AG-rich motifs within their 5'UTR which specifically activate eIF4A1 unwinding of local RNA structure to facilitate translation. This mode of eIF4A1 regulation is used by mRNAs encoding components of mTORC-signalling and cell cycle progression, and renders these mRNAs particularly sensitive to eIF4A1-inhibition. Mechanistically, we show that binding of eIF4A1 to AG-rich sequences leads to multimerization of eIF4A1 with eIF4A1 subunits performing distinct enzymatic activities. Our structural data suggest that RNA-binding of multimeric eIF4A1 induces conformational changes in the RNA resulting in an optimal positioning of eIF4A1 proximal to the RNA duplex enabling efficient unwinding. Our data proposes a model in which AG-motifs in the 5'UTR of eIF4A1-dependent mRNAs specifically activate eIF4A1, enabling assembly of the helicase-competent multimeric eIF4A1 complex, and positioning these complexes proximal to stable localised RNA structure allowing ribosomal subunit scanning.


Assuntos
Fator de Iniciação 4A em Eucariotos , Biossíntese de Proteínas , Regiões 5' não Traduzidas , Purinas , RNA Mensageiro/metabolismo , Humanos , Fator de Iniciação 4A em Eucariotos/metabolismo
3.
Matrix Biol Plus ; 19-20: 100136, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38223308

RESUMO

High-grade serous (HGS) ovarian cancer is the most lethal gynaecological disease in the world and metastases is a major cause. The omentum is the preferential metastatic site in HGS ovarian cancer patients and in vitro models that recapitulate the original environment of this organ at cellular and molecular level are being developed to study basic mechanisms that underpin this disease. The tumour extracellular matrix (ECM) plays active roles in HGS ovarian cancer pathology and response to therapy. However, most of the current in vitro models use matrices of animal origin and that do not recapitulate the complexity of the tumour ECM in patients. Here, we have developed omentum gel (OmGel), a matrix made from tumour-associated omental tissue of HGS ovarian cancer patients that has unprecedented similarity to the ECM of HGS omental tumours and is simple to prepare. When used in 2D and 3D in vitro assays to assess cancer cell functions relevant to metastatic ovarian cancer, OmGel performs as well as or better than the widely use Matrigel and does not induce additional phenotypic changes to ovarian cancer cells. Surprisingly, OmGel promotes pronounced morphological changes in cancer associated fibroblasts (CAFs). These changes were associated with the upregulation of proteins that define subsets of CAFs in tumour patient samples, highlighting the importance of using clinically and physiologically relevant matrices for in vitro studies. Hence, OmGel provides a step forward to study the biology of HGS omental metastasis. Metastasis in the omentum are also typical of other cancer types, particularly gastric cancer, implying the relevance of OmGel to study the biology of other highly lethal cancers.

4.
Genome Biol ; 22(1): 284, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615539

RESUMO

BACKGROUND: Regulation of protein output at the level of translation allows for a rapid adaptation to dynamic changes to the cell's requirements. This precise control of gene expression is achieved by complex and interlinked biochemical processes that modulate both the protein synthesis rate and stability of each individual mRNA. A major factor coordinating this regulation is the Ccr4-Not complex. Despite playing a role in most stages of the mRNA life cycle, no attempt has been made to take a global integrated view of how the Ccr4-Not complex affects gene expression. RESULTS: This study has taken a comprehensive approach to investigate post-transcriptional regulation mediated by the Ccr4-Not complex assessing steady-state mRNA levels, ribosome position, mRNA stability, and protein production transcriptome-wide. Depletion of the scaffold protein CNOT1 results in a global upregulation of mRNA stability and the preferential stabilization of mRNAs enriched for G/C-ending codons. We also uncover that mRNAs targeted to the ER for their translation have reduced translational efficiency when CNOT1 is depleted, specifically downstream of the signal sequence cleavage site. In contrast, translationally upregulated mRNAs are normally localized in p-bodies, contain disorder-promoting amino acids, and encode nuclear localized proteins. Finally, we identify ribosome pause sites that are resolved or induced by the depletion of CNOT1. CONCLUSIONS: We define the key mRNA features that determine how the human Ccr4-Not complex differentially regulates mRNA fate and protein synthesis through a mechanism linked to codon composition, amino acid usage, and mRNA localization.


Assuntos
Regulação da Expressão Gênica , Biossíntese de Proteínas , Estabilidade de RNA , RNA Mensageiro/metabolismo , Fatores de Transcrição/fisiologia , Códon , Técnicas de Silenciamento de Genes , Humanos , Proteínas Nucleares/biossíntese , Proteínas Nucleares/genética , Ribossomos/metabolismo , Fatores de Transcrição/genética
5.
Nat Cell Biol ; 23(6): 631-641, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34108659

RESUMO

Exosomes are extracellular vesicles derived from the endosomal compartment that are potentially involved in intercellular communication. Here, we found that frequently used biomarkers of exosomes are heterogeneous, and do not exhibit universal utility across different cell types. To uncover ubiquitous and abundant proteins, we used an unbiased and quantitative proteomic approach based on super-stable isotope labeling with amino acids in cell culture (super-SILAC), coupled to high-resolution mass spectrometry. In total, 1,212 proteins were quantified in the proteome of exosomes, irrespective of the cellular source or isolation method. A cohort of 22 proteins was universally enriched. Fifteen proteins were consistently depleted in the proteome of exosomes compared to cells. Among the enriched proteins, we identified biogenesis-related proteins, GTPases and membrane proteins, such as CD47 and ITGB1. The cohort of depleted proteins in exosomes was predominantly composed of nuclear proteins. We identified syntenin-1 as a consistently abundant protein in exosomes from different cellular origins. Syntenin-1 is also present in exosomes across different species and biofluids, highlighting its potential use as a putative universal biomarker of exosomes. Our study provides a comprehensive quantitative atlas of core proteins ubiquitous to exosomes that can serve as a resource for the scientific community.


Assuntos
Exossomos/metabolismo , Neoplasias/metabolismo , Proteoma , Proteômica , Sinteninas/metabolismo , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Estudos de Casos e Controles , Exossomos/genética , Exossomos/ultraestrutura , Feminino , Células HEK293 , Humanos , Marcação por Isótopo , Células Jurkat , Células MCF-7 , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Neoplasias/genética , Neoplasias/ultraestrutura , Células RAW 264.7 , Espectrometria de Massas por Ionização por Electrospray , Sinteninas/genética , Células THP-1 , Espectrometria de Massas em Tandem
6.
Cancer Metab ; 8: 20, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32974014

RESUMO

BACKGROUND: Mitochondrial serine catabolism to formate induces a metabolic switch to a hypermetabolic state with high rates of glycolysis, purine synthesis and pyrimidine synthesis. While formate is a purine precursor, it is not clear how formate induces pyrimidine synthesis. METHODS: Here we combine phospho-proteome and metabolic profiling to determine how formate induces pyrimidine synthesis. RESULTS: We discover that formate induces phosphorylation of carbamoyl phosphate synthetase (CAD), which is known to increase CAD enzymatic activity. Mechanistically, formate induces mechanistic target of rapamycin complex 1 (mTORC1) activity as quantified by phosphorylation of its targets S6, 4E-BP1, S6K1 and CAD. Treatment with the allosteric mTORC1 inhibitor rapamycin abrogates CAD phosphorylation and pyrimidine synthesis induced by formate. Furthermore, we show that the formate-dependent induction of mTOR signalling and CAD phosphorylation is dependent on an increase in purine synthesis. CONCLUSIONS: We conclude that formate activates mTORC1 and induces pyrimidine synthesis via the mTORC1-dependent phosphorylation of CAD.

7.
Genome Biol ; 20(1): 262, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31791371

RESUMO

BACKGROUND: Regulation of the mRNA life cycle is central to gene expression control and determination of cell fate. miRNAs represent a critical mRNA regulatory mechanism, but despite decades of research, their mode of action is still not fully understood. RESULTS: Here, we show that eIF4A2 is a major effector of the repressive miRNA pathway functioning via the Ccr4-Not complex. We demonstrate that while DDX6 interacts with Ccr4-Not, its effects in the mechanism are not as pronounced. Through its interaction with the Ccr4-Not complex, eIF4A2 represses mRNAs at translation initiation. We show evidence that native eIF4A2 has similar RNA selectivity to chemically inhibited eIF4A1. eIF4A2 exerts its repressive effect by binding purine-rich motifs which are enriched in the 5'UTR of target mRNAs directly upstream of the AUG start codon. CONCLUSIONS: Our data support a model whereby purine motifs towards the 3' end of the 5'UTR are associated with increased ribosome occupancy and possible uORF activation upon eIF4A2 binding.


Assuntos
RNA Helicases DEAD-box/metabolismo , Regulação da Expressão Gênica , MicroRNAs/fisiologia , Receptores CCR4/metabolismo , Fatores de Transcrição/metabolismo , Regiões 5' não Traduzidas , Humanos
8.
New Phytol ; 215(1): 309-322, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28394025

RESUMO

Plant-pathogen interactions are complex associations driven by the interplay of host and microbe-encoded factors. With secreted pathogen proteins (effectors) and immune signalling components found in the plant nucleus, this compartment is a battleground where susceptibility is specified. We hypothesized that, by defining changes in the nuclear proteome during infection, we can pinpoint vital components required for immunity or susceptibility. We tested this hypothesis by documenting dynamic changes in the tomato (Solanum lycopersicum) nuclear proteome during infection by the oomycete pathogen Phytophthora capsici. We enriched nuclei from infected and noninfected tissues and quantitatively assessed changes in the nuclear proteome. We then tested the role of candidate regulators in immunity through functional assays. We demonstrated that the host nuclear proteome dynamically changes during P. capsici infection. We observed that known nuclear immunity factors were differentially expressed and, based on this observation, selected a set of candidate regulators that we successfully implicated in immunity to P. capsici. Our work exemplifies a powerful strategy to gain rapid insight into important nuclear processes that underpin complex crop traits such as resistance. We have identified a large set of candidate nuclear factors that may underpin immunity to pathogens in crops.


Assuntos
Phytophthora/fisiologia , Proteínas de Plantas/fisiologia , Proteoma , Solanum lycopersicum/genética , Núcleo Celular/genética , Núcleo Celular/imunologia , Núcleo Celular/metabolismo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/parasitologia , Phytophthora/imunologia , Phytophthora/metabolismo , Imunidade Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
PLoS One ; 8(8): e72207, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23977254

RESUMO

Stable Isotope Labelling by Amino acids in Cell culture (SILAC) is a powerful technique for comparative quantitative proteomics, which has recently been applied to a number of different eukaryotic organisms. Inefficient incorporation of labelled amino acids in cell cultures of Arabidopsis thaliana has led to very limited use of SILAC in plant systems. We present a method allowing, for the first time, efficient labelling with stable isotope-containing arginine and lysine of whole Arabidopsis seedlings. To illustrate the utility of this method, we have combined the high labelling efficiency (>95%) with quantitative proteomics analyses of seedlings exposed to increased salt concentration. In plants treated for 7 days with 80 mM NaCl, a relatively mild salt stress, 215 proteins were identified whose expression levels changed significantly compared to untreated seedling controls. The 92 up-regulated proteins included proteins involved in abiotic stress responses and photosynthesis, while the 123 down-regulated proteins were enriched in proteins involved in reduction of oxidative stress and other stress responses, respectively. Efficient labelling of whole Arabidopsis seedlings by this modified SILAC method opens new opportunities to exploit the genetic resources of Arabidopsis and analyse the impact of mutations on quantitative protein dynamics in vivo.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Marcação por Isótopo/métodos , Plântula/genética , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Arginina/metabolismo , Isótopos de Carbono , Técnicas de Cultura de Células , Deutério , Lisina/metabolismo , Dados de Sequência Molecular , Proteômica , Salinidade , Plântula/efeitos dos fármacos , Plântula/metabolismo , Cloreto de Sódio/farmacologia , Estresse Fisiológico
10.
J Proteomics ; 88: 92-103, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23501838

RESUMO

Mass spectrometry, in the past five years, has increased in speed, accuracy and use. With the ability of the mass spectrometers to identify increasing numbers of proteins the identification of undesirable peptides (those not from the protein sample) has also increased. Most undesirable contaminants originate in the laboratory and come from either the user (e.g. keratin from hair and skin), or from reagents (e.g. trypsin), that are required to prepare samples for analysis. We found that a significant amount of MS instrument time was spent sequencing peptides from abundant contaminant proteins. While completely eliminating non-specific protein contamination is not feasible, it is possible to reduce the sequencing of these contaminants. For example, exclusion lists can provide a list of masses that can be used to instruct the mass spectrometer to 'ignore' the undesired contaminant peptides in the list. We empirically generated be-spoke exclusion lists for several model organisms (Homo sapiens, Caenorhabditis elegans, Saccharomyces cerevisiae and Xenopus laevis), utilising information from over 500 mass spectrometry runs and cumulative analysis of these data. Here we show that by employing these empirically generated lists, it was possible to reduce the time spent analysing contaminating peptides in a given sample thereby facilitating more efficient data acquisition and analysis. BIOLOGICAL SIGNIFICANCE: Given the current efficacy of the Mass Spectrometry instrumentation, the utilisation of data from ~500 mass spec runs to generate be-spoke exclusion lists and optimise data acquisition is the significance of this manuscript.


Assuntos
Proteínas de Caenorhabditis elegans/análise , Espectrometria de Massas/métodos , Peptídeos/análise , Proteômica/métodos , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Xenopus/análise , Animais , Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/química , Cromatografia Líquida de Alta Pressão/métodos , Humanos , Peptídeos/química , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Xenopus/química , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...