Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
J Am Soc Nephrol ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656806

RESUMO

BACKGROUND: The severity of chronic histopathologic lesions on kidney biopsy is independently associated with higher risk of progressive chronic kidney disease (CKD). Because kidney biopsies are invasive, identification of blood markers that report on underlying kidney histopathology has the potential to enhance CKD care. METHODS: We examined the association between 6592 plasma protein levels measured by aptamers and the severity of interstitial fibrosis and tubular atrophy (IFTA), glomerulosclerosis, arteriolar sclerosis, and arterial sclerosis among 434 participants of the Boston Kidney Biopsy Cohort. For proteins significantly associated with at least one histologic lesion, we assessed renal arteriovenous protein gradients among 21 individuals who had undergone invasive catheterization and assessed the expression of the cognate gene among 47 individuals with single cell RNA sequencing data in the Kidney Precision Medicine Project. RESULTS: In models adjusted for estimated glomerular filtration rate (eGFR), proteinuria, and demographic factors, we identified 35 proteins associated with one or more chronic histologic lesions, including 20 specific for IFTA, 8 specific for glomerulosclerosis, and 1 specific for arteriolar sclerosis. In general, higher levels of these proteins were associated with more severe histologic score and lower eGFR. Exceptions included testican-2 and NELL1, which were associated with less glomerulosclerosis and IFTA, respectively, and higher eGFR; notably, both of these proteins demonstrated significantly higher levels from artery to renal vein, demonstrating net kidney release. In the Kidney Precision Medicine Project, 13 of the 35 protein hits had cognate gene expression enriched in one or more cell types in the kidney, including podocyte expression of select glomerulosclerosis markers (including testican-2) and tubular expression of several IFTA markers (including NELL1). CONCLUSIONS: Proteomic analysis identified circulating proteins associated with chronic histopathologic lesions, some of which have concordant site-specific expression within the kidney.

2.
Kidney Int ; 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38286178

RESUMO

Current classification of chronic kidney disease (CKD) into stages using indirect systemic measures (estimated glomerular filtration rate (eGFR) and albuminuria) is agnostic to the heterogeneity of underlying molecular processes in the kidney thereby limiting precision medicine approaches. To generate a novel CKD categorization that directly reflects within kidney disease drivers we analyzed publicly available transcriptomic data from kidney biopsy tissue. A Self-Organizing Maps unsupervised artificial neural network machine-learning algorithm was used to stratify a total of 369 patients with CKD and 46 living kidney donors as healthy controls. Unbiased stratification of the discovery cohort resulted in identification of four novel molecular categories of disease termed CKD-Blue, CKD-Gold, CKD-Olive, CKD-Plum that were replicated in independent CKD and diabetic kidney disease datasets and can be further tested on any external data at kidneyclass.org. Each molecular category spanned across CKD stages and histopathological diagnoses and represented transcriptional activation of distinct biological pathways. Disease progression rates were highly significantly different between the molecular categories. CKD-Gold displayed rapid progression, with significant eGFR-adjusted Cox regression hazard ratio of 5.6 [1.01-31.3] for kidney failure and hazard ratio of 4.7 [1.3-16.5] for composite of kidney failure or a 40% or more eGFR decline. Urine proteomics revealed distinct patterns between the molecular categories, and a 25-protein signature was identified to distinguish CKD-Gold from other molecular categories. Thus, patient stratification based on kidney tissue omics offers a gateway to non-invasive biomarker-driven categorization and the potential for future clinical implementation, as a key step towards precision medicine in CKD.

3.
Nat Commun ; 15(1): 433, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38199997

RESUMO

There is a need to define regions of gene activation or repression that control human kidney cells in states of health, injury, and repair to understand the molecular pathogenesis of kidney disease and design therapeutic strategies. Comprehensive integration of gene expression with epigenetic features that define regulatory elements remains a significant challenge. We measure dual single nucleus RNA expression and chromatin accessibility, DNA methylation, and H3K27ac, H3K4me1, H3K4me3, and H3K27me3 histone modifications to decipher the chromatin landscape and gene regulation of the kidney in reference and adaptive injury states. We establish a spatially-anchored epigenomic atlas to define the kidney's active, silent, and regulatory accessible chromatin regions across the genome. Using this atlas, we note distinct control of adaptive injury in different epithelial cell types. A proximal tubule cell transcription factor network of ELF3, KLF6, and KLF10 regulates the transition between health and injury, while in thick ascending limb cells this transition is regulated by NR2F1. Further, combined perturbation of ELF3, KLF6, and KLF10 distinguishes two adaptive proximal tubular cell subtypes, one of which manifested a repair trajectory after knockout. This atlas will serve as a foundation to facilitate targeted cell-specific therapeutics by reprogramming gene regulatory networks.


Assuntos
Cromatina , Rim , Humanos , Cromatina/genética , Túbulos Renais Proximais , Nível de Saúde , Contagem de Células
4.
bioRxiv ; 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38293222

RESUMO

Lupus nephritis (LN) is a frequent manifestation of systemic lupus erythematosus, and fewer than half of patients achieve complete renal response with standard immunosuppressants. Identifying non-invasive, blood-based pathologic immune alterations associated with renal injury could aid therapeutic decisions. Here, we used mass cytometry immunophenotyping of peripheral blood mononuclear cells in 145 patients with biopsy-proven LN and 40 healthy controls to evaluate the heterogeneity of immune activation in patients with LN and to identify correlates of renal parameters and treatment response. Unbiased analysis identified 3 immunologically distinct groups of patients with LN that were associated with different patterns of histopathology, renal cell infiltrates, urine proteomic profiles, and treatment response at one year. Patients with enriched circulating granzyme B+ T cells at baseline showed more severe disease and increased numbers of activated CD8 T cells in the kidney, yet they had the highest likelihood of treatment response. A second group characterized primarily by a high type I interferon signature had a lower likelihood of response to therapy, while a third group appeared immunologically inactive by immunophenotyping at enrollment but with chronic renal injuries. Main immune profiles could be distilled down to 5 simple cytometric parameters that recapitulate several of the associations, highlighting the potential for blood immune profiling to translate to clinically useful non-invasive metrics to assess immune-mediated disease in LN.

5.
Kidney Int ; 105(2): 242-244, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38245213

RESUMO

The renal medulla maintains salt and water balance and is prone to dysregulation because of high oxygen demand. Challenges in obtaining high-quality tissue have limited characterization of molecular programs regulating the medulla. Haug et al. leveraged gene expression, chromatin accessibility, long-range chromosomal interactions, and spatial transcriptomics to build a reference set of medullary tissue marker genes to define the medullary role in kidney function, exemplifying the strength and utility of multi-omic data integration.


Assuntos
Medula Renal , Multiômica , Medula Renal/metabolismo , Cloreto de Sódio na Dieta/metabolismo , Cloreto de Sódio/metabolismo , Equilíbrio Hidroeletrolítico
6.
Diabetes ; 73(2): 312-317, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37935024

RESUMO

Diabetic nephropathy (DN) is the leading cause of end-stage renal disease in the U.S. and has a significant impact on human suffering. Leptin-deficient BTBR (BTBRob/ob) mice develop hallmark features of obesity-induced DN, whereas leptin-deficient C57BL/6J (B6ob/ob) mice do not. To identify genetic loci that underlie this strain difference, we constructed an F2 intercross between BTBRob/ob and B6ob/ob mice. We isolated kidneys from 460 F2 mice and histologically scored them for percent mesangial matrix and glomerular volume (∼50 glomeruli per mouse), yielding ∼45,000 distinct measures in total. The same histological measurements were made in kidneys from B6 and BTBR mice, either lean or obese (Lepob/ob), at 4 and 10 weeks of age, allowing us to assess the contribution of strain, age, and obesity to glomerular pathology. All F2 mice were genotyped for ∼5,000 single nucleotide polymorphisms (SNPs), ∼2,000 of which were polymorphic between B6 and BTBR, enabling us to identify a quantitative trait locus (QTL) on chromosome 7, with a peak at ∼30 Mbp, for percent mesangial matrix, glomerular volume, and mesangial volume. The podocyte-specific gene nephrin (Nphs1) is physically located at the QTL and contains high-impact SNPs in BTBR, including several missense variants within the extracellular immunoglobulin-like domains.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Humanos , Camundongos , Animais , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Leptina , Diabetes Mellitus Tipo 2/genética , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Camundongos Endogâmicos , Obesidade/complicações , Obesidade/genética , Camundongos Obesos
7.
JCI Insight ; 9(3)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38127456

RESUMO

Despite clinical use of immunosuppressive agents, the immunopathogenesis of minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS) remains unclear. Src homology 3-binding protein 2 (SH3BP2), a scaffold protein, forms an immune signaling complex (signalosome) with 17 other proteins, including phospholipase Cγ2 (PLCγ2) and Rho-guanine nucleotide exchange factor VAV2 (VAV2). Bioinformatic analysis of human glomerular transcriptome (Nephrotic Syndrome Study Network cohort) revealed upregulated SH3BP2 in MCD and FSGS. The SH3BP2 signalosome score and downstream MyD88, TRIF, and NFATc1 were significantly upregulated in MCD and FSGS. Immune pathway activation scores for Toll-like receptors, cytokine-cytokine receptor, and NOD-like receptors were increased in FSGS. Lower SH3BP2 signalosome score was associated with MCD, higher estimated glomerular filtration rate, and remission. Further work using Sh3bp2KI/KI transgenic mice with a gain-in-function mutation showed ~6-fold and ~25-fold increases in albuminuria at 4 and 12 weeks, respectively. Decreased serum albumin and unchanged serum creatinine were observed at 12 weeks. Sh3bp2KI/KI kidney morphology appeared normal except for increased mesangial cellularity and patchy foot process fusion without electron-dense deposits. SH3BP2 co-immunoprecipitated with PLCγ2 and VAV2 in human podocytes, underscoring the importance of SH3BP2 in immune activation. SH3BP2 and its binding partners may determine the immune activation pathways resulting in podocyte injury leading to loss of the glomerular filtration barrier.


Assuntos
Glomerulosclerose Segmentar e Focal , Nefrose Lipoide , Síndrome Nefrótica , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Glomerulosclerose Segmentar e Focal/genética , Glomerulosclerose Segmentar e Focal/metabolismo , Rim/patologia , Glomérulos Renais/patologia , Camundongos Transgênicos , Nefrose Lipoide/patologia , Síndrome Nefrótica/metabolismo , Fosfolipase C gama/genética , Fosfolipase C gama/metabolismo
8.
Int J Mol Sci ; 24(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37958544

RESUMO

Sphingosine-1-phosphate lyase insufficiency syndrome (SPLIS) is an inborn error of metabolism caused by inactivating mutations in SGPL1, the gene encoding sphingosine-1-phosphate lyase (SPL), an essential enzyme needed to degrade sphingolipids. SPLIS features include glomerulosclerosis, adrenal insufficiency, neurological defects, ichthyosis, and immune deficiency. Currently, there is no cure for SPLIS, and severely affected patients often die in the first years of life. We reported that adeno-associated virus (AAV) 9-mediated SGPL1 gene therapy (AAV-SPL) given to newborn Sgpl1 knockout mice that model SPLIS and die in the first few weeks of life prolonged their survival to 4.5 months and prevented or delayed the onset of SPLIS phenotypes. In this study, we tested the efficacy of a modified AAV-SPL, which we call AAV-SPL 2.0, in which the original cytomegalovirus (CMV) promoter driving the transgene is replaced with the synthetic "CAG" promoter used in several clinically approved gene therapy agents. AAV-SPL 2.0 infection of human embryonic kidney (HEK) cells led to 30% higher SPL expression and enzyme activity compared to AAV-SPL. Newborn Sgpl1 knockout mice receiving AAV-SPL 2.0 survived ≥ 5 months and showed normal neurodevelopment, 85% of normal weight gain over the first four months, and delayed onset of proteinuria. Over time, treated mice developed nephrosis and glomerulosclerosis, which likely resulted in their demise. Our overall findings show that AAV-SPL 2.0 performs equal to or better than AAV-SPL. However, improved kidney targeting may be necessary to achieve maximally optimized gene therapy as a potentially lifesaving SPLIS treatment.


Assuntos
Terapia Genética , Parvovirinae , Esfingosina , Animais , Humanos , Camundongos , Aldeído Liases/genética , Aldeído Liases/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Lisofosfolipídeos/metabolismo , Camundongos Knockout , Parvovirinae/metabolismo , Fosfatos , Esfingosina/metabolismo
10.
bioRxiv ; 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37745313

RESUMO

Acute kidney injury (AKI) is an important contributor to the development of chronic kidney disease (CKD). There is a need to understand molecular mediators that drive either recovery or progression to CKD. In particular, the role of miRNA and its regulatory role in AKI is poorly understood. We performed miRNA and mRNA sequencing on biobanked human kidney tissues obtained in the routine clinical care of patients with the diagnoses of AKI and minimal change disease (MCD), in addition to nephrectomized (Ref) tissue from individuals without known kidney disease. Transcriptomic analysis of mRNA revealed that Ref tissues exhibited a similar injury signature to AKI, not identified in MCD samples. The transcriptomic signature of human AKI was enriched with genes in pathways involved in cell adhesion and epithelial-to-mesenchymal transition (e.g., CDH6, ITGB6, CDKN1A ). miRNA DE analysis revealed upregulation of miRNA associated with immune cell recruitment and inflammation (e.g., miR-146a, miR-155, miR-142, miR-122). These miRNA (i.e., miR-122, miR-146) are also associated with downregulation of mRNA such as DDR2 and IGFBP6 , respectively. These findings suggest integrated interactions between miRNAs and target mRNAs in AKI-related processes such as inflammation, immune cell activation and epithelial-to-mesenchymal transition. These data contribute several novel findings when describing the epigenetic regulation of AKI by miRNA, and also underscores the importance of utilizing an appropriate reference control tissue to understand canonical pathway alterations in AKI.

11.
J Clin Invest ; 133(20)2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37616058

RESUMO

Diabetic kidney disease (DKD) can lead to end-stage kidney disease (ESKD) and mortality; however, few mechanistic biomarkers are available for high-risk patients, especially those without macroalbuminuria. Urine from participants with diabetes from the Chronic Renal Insufficiency Cohort (CRIC) study, the Singapore Study of Macro-angiopathy and Micro-vascular Reactivity in Type 2 Diabetes (SMART2D), and the American Indian Study determined whether urine adenine/creatinine ratio (UAdCR) could be a mechanistic biomarker for ESKD. ESKD and mortality were associated with the highest UAdCR tertile in the CRIC study and SMART2D. ESKD was associated with the highest UAdCR tertile in patients without macroalbuminuria in the CRIC study, SMART2D, and the American Indian study. Empagliflozin lowered UAdCR in nonmacroalbuminuric participants. Spatial metabolomics localized adenine to kidney pathology, and single-cell transcriptomics identified ribonucleoprotein biogenesis as a top pathway in proximal tubules of patients without macroalbuminuria, implicating mTOR. Adenine stimulated matrix in tubular cells via mTOR and stimulated mTOR in mouse kidneys. A specific inhibitor of adenine production was found to reduce kidney hypertrophy and kidney injury in diabetic mice. We propose that endogenous adenine may be a causative factor in DKD.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Falência Renal Crônica , Humanos , Animais , Camundongos , Nefropatias Diabéticas/patologia , Adenina , Diabetes Mellitus Experimental/complicações , Rim/metabolismo , Biomarcadores , Serina-Treonina Quinases TOR
12.
Sci Rep ; 13(1): 12701, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37543648

RESUMO

Machine learning applied to digital pathology has been increasingly used to assess kidney function and diagnose the underlying cause of chronic kidney disease (CKD). We developed a novel computational framework, clustering-based spatial analysis (CluSA), that leverages unsupervised learning to learn spatial relationships between local visual patterns in kidney tissue. This framework minimizes the need for time-consuming and impractical expert annotations. 107,471 histopathology images obtained from 172 biopsy cores were used in the clustering and in the deep learning model. To incorporate spatial information over the clustered image patterns on the biopsy sample, we spatially encoded clustered patterns with colors and performed spatial analysis through graph neural network. A random forest classifier with various groups of features were used to predict CKD. For predicting eGFR at the biopsy, we achieved a sensitivity of 0.97, specificity of 0.90, and accuracy of 0.95. AUC was 0.96. For predicting eGFR changes in one-year, we achieved a sensitivity of 0.83, specificity of 0.85, and accuracy of 0.84. AUC was 0.85. This study presents the first spatial analysis based on unsupervised machine learning algorithms. Without expert annotation, CluSA framework can not only accurately classify and predict the degree of kidney function at the biopsy and in one year, but also identify novel predictors of kidney function and renal prognosis.


Assuntos
Redes Neurais de Computação , Insuficiência Renal Crônica , Humanos , Algoritmos , Aprendizado de Máquina , Insuficiência Renal Crônica/diagnóstico , Análise por Conglomerados
13.
medRxiv ; 2023 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-37398187

RESUMO

Diabetic kidney disease (DKD) can lead to end-stage kidney disease (ESKD) and mortality, however, few mechanistic biomarkers are available for high risk patients, especially those without macroalbuminuria. Urine from participants with diabetes from Chronic Renal Insufficiency Cohort (CRIC), Singapore Study of Macro-Angiopathy and Reactivity in Type 2 Diabetes (SMART2D), and the Pima Indian Study determined if urine adenine/creatinine ratio (UAdCR) could be a mechanistic biomarker for ESKD. ESKD and mortality were associated with the highest UAdCR tertile in CRIC (HR 1.57, 1.18, 2.10) and SMART2D (HR 1.77, 1.00, 3.12). ESKD was associated with the highest UAdCR tertile in patients without macroalbuminuria in CRIC (HR 2.36, 1.26, 4.39), SMART2D (HR 2.39, 1.08, 5.29), and Pima Indian study (HR 4.57, CI 1.37-13.34). Empagliflozin lowered UAdCR in non-macroalbuminuric participants. Spatial metabolomics localized adenine to kidney pathology and transcriptomics identified ribonucleoprotein biogenesis as a top pathway in proximal tubules of patients without macroalbuminuria, implicating mammalian target of rapamycin (mTOR). Adenine stimulated matrix in tubular cells via mTOR and stimulated mTOR in mouse kidneys. A specific inhibitor of adenine production was found to reduce kidney hypertrophy and kidney injury in diabetic mice. We propose that endogenous adenine may be a causative factor in DKD.

14.
medRxiv ; 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37398386

RESUMO

Arteriolar hyalinosis in kidneys is an independent predictor of cardiovascular disease, the main cause of mortality in chronic kidney disease (CKD). The underlying molecular mechanisms of protein accumulation in the subendothelial space are not well understood. Using single cell transcriptomic data and whole slide images from kidney biopsies of patients with CKD and acute kidney injury in the Kidney Precision Medicine Project, the molecular signals associated with arteriolar hyalinosis were evaluated. Co-expression network analysis of the endothelial genes yielded three gene set modules as significantly associated with arteriolar hyalinosis. Pathway analysis of these modules showed enrichment of transforming growth factor beta / bone morphogenetic protein (TGFß / BMP) and vascular endothelial growth factor (VEGF) signaling pathways in the endothelial cell signatures. Ligand-receptor analysis identified multiple integrins and cell adhesion receptors as over-expressed in arteriolar hyalinosis, suggesting a potential role of integrin-mediated TGFß signaling. Further analysis of arteriolar hyalinosis associated endothelial module genes identified focal segmental glomerular sclerosis as an enriched term. On validation in gene expression profiles from the Nephrotic Syndrome Study Network cohort, one of the three modules was significantly associated with the composite endpoint (> 40% reduction in estimated glomerular filtration rate (eGFR) or kidney failure) independent of age, sex, race, and baseline eGFR, suggesting poor prognosis with elevated expression of genes in this module. Thus, integration of structural and single cell molecular features yielded biologically relevant gene sets, signaling pathways and ligand-receptor interactions, underlying arteriolar hyalinosis and putative targets for therapeutic intervention.

15.
Nature ; 619(7970): 585-594, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37468583

RESUMO

Understanding kidney disease relies on defining the complexity of cell types and states, their associated molecular profiles and interactions within tissue neighbourhoods1. Here we applied multiple single-cell and single-nucleus assays (>400,000 nuclei or cells) and spatial imaging technologies to a broad spectrum of healthy reference kidneys (45 donors) and diseased kidneys (48 patients). This has provided a high-resolution cellular atlas of 51 main cell types, which include rare and previously undescribed cell populations. The multi-omic approach provides detailed transcriptomic profiles, regulatory factors and spatial localizations spanning the entire kidney. We also define 28 cellular states across nephron segments and interstitium that were altered in kidney injury, encompassing cycling, adaptive (successful or maladaptive repair), transitioning and degenerative states. Molecular signatures permitted the localization of these states within injury neighbourhoods using spatial transcriptomics, while large-scale 3D imaging analysis (around 1.2 million neighbourhoods) provided corresponding linkages to active immune responses. These analyses defined biological pathways that are relevant to injury time-course and niches, including signatures underlying epithelial repair that predicted maladaptive states associated with a decline in kidney function. This integrated multimodal spatial cell atlas of healthy and diseased human kidneys represents a comprehensive benchmark of cellular states, neighbourhoods, outcome-associated signatures and publicly available interactive visualizations.


Assuntos
Perfilação da Expressão Gênica , Nefropatias , Rim , Análise de Célula Única , Transcriptoma , Humanos , Núcleo Celular/genética , Rim/citologia , Rim/lesões , Rim/metabolismo , Rim/patologia , Nefropatias/metabolismo , Nefropatias/patologia , Transcriptoma/genética , Estudos de Casos e Controles , Imageamento Tridimensional
16.
bioRxiv ; 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37333123

RESUMO

There is a need to define regions of gene activation or repression that control human kidney cells in states of health, injury, and repair to understand the molecular pathogenesis of kidney disease and design therapeutic strategies. However, comprehensive integration of gene expression with epigenetic features that define regulatory elements remains a significant challenge. We measured dual single nucleus RNA expression and chromatin accessibility, DNA methylation, and H3K27ac, H3K4me1, H3K4me3, and H3K27me3 histone modifications to decipher the chromatin landscape and gene regulation of the kidney in reference and adaptive injury states. We established a comprehensive and spatially-anchored epigenomic atlas to define the kidney's active, silent, and regulatory accessible chromatin regions across the genome. Using this atlas, we noted distinct control of adaptive injury in different epithelial cell types. A proximal tubule cell transcription factor network of ELF3 , KLF6 , and KLF10 regulated the transition between health and injury, while in thick ascending limb cells this transition was regulated by NR2F1 . Further, combined perturbation of ELF3 , KLF6 , and KLF10 distinguished two adaptive proximal tubular cell subtypes, one of which manifested a repair trajectory after knockout. This atlas will serve as a foundation to facilitate targeted cell-specific therapeutics by reprogramming gene regulatory networks.

18.
J Clin Invest ; 133(5)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36637914

RESUMO

The molecular mechanisms of sodium-glucose cotransporter-2 (SGLT2) inhibitors (SGLT2i) remain incompletely understood. Single-cell RNA sequencing and morphometric data were collected from research kidney biopsies donated by young persons with type 2 diabetes (T2D), aged 12 to 21 years, and healthy controls (HCs). Participants with T2D were obese and had higher estimated glomerular filtration rates and mesangial and glomerular volumes than HCs. Ten T2D participants had been prescribed SGLT2i (T2Di[+]) and 6 not (T2Di[-]). Transcriptional profiles showed SGLT2 expression exclusively in the proximal tubular (PT) cluster with highest expression in T2Di(-) patients. However, transcriptional alterations with SGLT2i treatment were seen across nephron segments, particularly in the distal nephron. SGLT2i treatment was associated with suppression of transcripts in the glycolysis, gluconeogenesis, and tricarboxylic acid cycle pathways in PT, but had the opposite effect in thick ascending limb. Transcripts in the energy-sensitive mTORC1-signaling pathway returned toward HC levels in all tubular segments in T2Di(+), consistent with a diabetes mouse model treated with SGLT2i. Decreased levels of phosphorylated S6 protein in proximal and distal tubules in T2Di(+) patients confirmed changes in mTORC1 pathway activity. We propose that SGLT2i treatment benefits the kidneys by mitigating diabetes-induced metabolic perturbations via suppression of mTORC1 signaling in kidney tubules.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Camundongos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Rim/metabolismo , Glomérulos Renais/metabolismo , Transportador 2 de Glucose-Sódio/genética , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Humanos , Criança , Adolescente , Adulto Jovem , Alvo Mecanístico do Complexo 1 de Rapamicina
19.
Kidney Int ; 103(3): 565-579, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36442540

RESUMO

The diagnosis of nephrotic syndrome relies on clinical presentation and descriptive patterns of injury on kidney biopsies, but not specific to underlying pathobiology. Consequently, there are variable rates of progression and response to therapy within diagnoses. Here, an unbiased transcriptomic-driven approach was used to identify molecular pathways which are shared by subgroups of patients with either minimal change disease (MCD) or focal segmental glomerulosclerosis (FSGS). Kidney tissue transcriptomic profile-based clustering identified three patient subgroups with shared molecular signatures across independent, North American, European, and African cohorts. One subgroup had significantly greater disease progression (Hazard Ratio 5.2) which persisted after adjusting for diagnosis and clinical measures (Hazard Ratio 3.8). Inclusion in this subgroup was retained even when clustering was limited to those with less than 25% interstitial fibrosis. The molecular profile of this subgroup was largely consistent with tumor necrosis factor (TNF) pathway activation. Two TNF pathway urine markers were identified, tissue inhibitor of metalloproteinases-1 (TIMP-1) and monocyte chemoattractant protein-1 (MCP-1), that could be used to predict an individual's TNF pathway activation score. Kidney organoids and single-nucleus RNA-sequencing of participant kidney biopsies, validated TNF-dependent increases in pathway activation score, transcript and protein levels of TIMP-1 and MCP-1, in resident kidney cells. Thus, molecular profiling identified a subgroup of patients with either MCD or FSGS who shared kidney TNF pathway activation and poor outcomes. A clinical trial testing targeted therapies in patients selected using urinary markers of TNF pathway activation is ongoing.


Assuntos
Glomerulosclerose Segmentar e Focal , Nefrologia , Nefrose Lipoide , Síndrome Nefrótica , Humanos , Glomerulosclerose Segmentar e Focal/patologia , Nefrose Lipoide/diagnóstico , Inibidor Tecidual de Metaloproteinase-1 , Síndrome Nefrótica/diagnóstico , Fatores de Necrose Tumoral/uso terapêutico
20.
Kidney Int ; 102(6): 1345-1358, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36055599

RESUMO

Hyperfiltration is a state of high glomerular filtration rate (GFR) observed in early diabetes that damages glomeruli, resulting in an iterative process of increasing filtration load on fewer and fewer remaining functional glomeruli. To delineate underlying cellular mechanisms of damage associated with hyperfiltration, transcriptional profiles of kidney biopsies from Pima Indians with type 2 diabetes with or without early-stage diabetic kidney disease were grouped into two hyperfiltration categories based on annual iothalamate GFR measurements. Twenty-six participants with a peak GFR measurement within two years of biopsy were categorized as the hyperfiltration group, and 26 in whom biopsy preceded peak GFR by over two years were considered pre-hyperfiltration. The hyperfiltration group had higher hemoglobin A1c, higher urine albumin-to-creatinine ratio, increased glomerular basement membrane width and lower podocyte density compared to the pre-hyperfiltration group. A glomerular 1240-gene transcriptional signature identified in the hyperfiltration group was enriched for endothelial stress response signaling genes, including endothelin-1, tec-kinase and transforming growth factor-ß1 pathways, with the majority of the transcripts mapped to endothelial and inflammatory cell clusters in kidney single cell transcriptional data. Thus, our analysis reveals molecular pathomechanisms associated with hyperfiltration in early diabetic kidney disease involving putative ligand-receptor pairs with downstream intracellular targets linked to cellular crosstalk between endothelial and mesangial cells.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Humanos , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/complicações , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Glomérulos Renais/patologia , Taxa de Filtração Glomerular , Hemoglobinas Glicadas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...