Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 39(12): 3124-30, 2010 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-20221547

RESUMO

Molybdenum (Mo)-dependent nitrogenase is a complex metalloprotein that catalyzes the biological reduction of dinitrogen (N(2)) to ammonia (NH(3)) at the molybdenum-iron cofactor (FeMoco) site of its molybdenum-iron (MoFe) protein component. Here we report the formation of a homocitrate-free, iron-molybdenum ("FeMo") cluster on the biosynthetic scaffold of FeMoco, NifEN. Such a NifEN-associated "FeMo" cluster exhibits EPR features similar to those of the NifEN-associated, fully-complemented "FeMoco", which originate from the presence of Mo in both cluster species; however, "FeMo" cluster and "FeMoco" display different temperature-dependent changes in the line shape and the signal intensity of their respective EPR features, which reflect the impact of homocitrate on the redox properties of these clusters. XAS/EXAFS analysis reveals that the Mo centers in both "FeMo" cluster and "FeMoco" are present in a similar coordination environment, although Mo in "FeMo" cluster is more loosely coordinated as compared to that in "FeMoco" with respect to the Mo-O distances in the cluster, likely due to the absence of homocitrate that normally serves as an additional ligand for the Mo in the cluster. Subsequent biochemical investigation of the "FeMo" cluster not only facilitates the determination of the sequence of events in the mobilization of Mo and homocitrate during FeMoco maturation, but also permits the examination of the role of homocitrate in the transfer of FeMoco between NifEN and MoFe protein. Combined outcome of these studies establishes a platform for future structural analysis of the interactions between NifEN and MoFe protein, which will provide useful insights into the mechanism of cluster transfer between the two proteins.


Assuntos
Ferro/química , Molibdênio/química , Molibdoferredoxina , Nitrogenase , Ácidos Tricarboxílicos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Molibdoferredoxina/química , Molibdoferredoxina/genética , Molibdoferredoxina/metabolismo , Fixação de Nitrogênio , Nitrogenase/química , Nitrogenase/genética , Nitrogenase/metabolismo , Espectroscopia por Absorção de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA