Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
FEBS J ; 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37873605

RESUMO

Cellular senescence is a state of durable cell arrest that has been identified both in vitro and in vivo. It is associated with profound changes in gene expression and a specific secretory profile that includes pro-inflammatory cytokines, growth factors and matrix-remodelling enzymes, referred to as the senescence-associated secretory phenotype (SASP). In cancer, senescence can have anti- or pro-tumour effects. On one hand, it can inhibit tumour progression in a cell autonomous manner. On the other hand, senescence can also promote tumour initiation, progression, metastatic dissemination and resistance to therapy in a paracrine manner. Therefore, despite efforts to target senescence as a potential strategy to inhibit tumour growth, senescent cancer and microenvironmental cells can eventually lead to uncontrolled proliferation and aggressive tumour phenotypes. This can happen either through overcoming senescence growth arrest or through SASP-mediated effects in adjacent tumour cells. This review will discuss how senescence affects the tumour microenvironment, including extracellular matrix remodelling, the immune system and the vascular compartment, to promote tumourigenesis, metastasis and resistance to DNA-damaging therapies. It will also discuss current approaches used in the field to target senescence: senolytics, improving the immune clearance of senescent cells and targeting the SASP.

3.
J Exp Med ; 220(1)2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36269299

RESUMO

Primary tumors and distant site metastases form a bidirectionally communicating system. Yet, the molecular mechanisms of this crosstalk are poorly understood. Here, we identified the proteolytically cleaved fragments of angiopoietin-like 4 (ANGPTL4) as contextually active protumorigenic and antitumorigenic contributors in this communication ecosystem. Preclinical studies in multiple tumor models revealed that the C-terminal fragment (cANGPTL4) promoted tumor growth and metastasis. In contrast, the N-terminal fragment of ANGPTL4 (nANGPTL4) inhibited metastasis and enhanced overall survival in a postsurgical metastasis model by inhibiting WNT signaling and reducing vascularity at the metastatic site. Tracing ANGPTL4 and its fragments in tumor patients detected full-length ANGPTL4 primarily in tumor tissues, whereas nANGPTL4 predominated in systemic circulation and correlated inversely with disease progression. The study highlights the spatial context of the proteolytic cleavage-dependent pro- and antitumorigenic functions of ANGPTL4 and identifies and validates nANGPTL4 as a novel biomarker of tumor progression and antimetastatic therapeutic agent.


Assuntos
Proteína 4 Semelhante a Angiopoietina , Neoplasias , Humanos , Proteína 4 Semelhante a Angiopoietina/farmacologia , Proteína 4 Semelhante a Angiopoietina/uso terapêutico , Angiopoietinas/farmacologia , Angiopoietinas/uso terapêutico , Biomarcadores Tumorais , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/uso terapêutico
4.
Development ; 149(13)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35723257

RESUMO

Precise vascular patterning is crucial for normal growth and development. The ERG transcription factor drives Delta-like ligand 4 (DLL4)/Notch signalling and is thought to act as a pivotal regulator of endothelial cell (EC) dynamics and developmental angiogenesis. However, molecular regulation of ERG activity remains obscure. Using a series of EC-specific focal adhesion kinase (FAK)-knockout (KO) and point-mutant FAK-knock-in mice, we show that loss of ECFAK, its kinase activity or phosphorylation at FAK-Y397, but not FAK-Y861, reduces ERG and DLL4 expression levels together with concomitant aberrations in vascular patterning. Rapid immunoprecipitation mass spectrometry of endogenous proteins identified that endothelial nuclear-FAK interacts with the deubiquitinase USP9x and the ubiquitin ligase TRIM25. Further in silico analysis confirms that ERG interacts with USP9x and TRIM25. Moreover, ERG levels are reduced in FAKKO ECs via a ubiquitin-mediated post-translational modification programme involving USP9x and TRIM25. Re-expression of ERG in vivo and in vitro rescues the aberrant vessel-sprouting defects observed in the absence of ECFAK. Our findings identify ECFAK as a regulator of retinal vascular patterning by controlling ERG protein degradation via TRIM25/USP9x.


Assuntos
Células Endoteliais , Fatores de Transcrição , Animais , Células Endoteliais/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Camundongos , Neovascularização Fisiológica/genética , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitinas/metabolismo
5.
Cancer Res ; 82(10): 1909-1925, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35350066

RESUMO

Despite substantial advances in the treatment of solid cancers, resistance to therapy remains a major obstacle to prolonged progression-free survival. Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers, with a high level of liver metastasis. Primary PDAC is highly hypoxic, and metastases are resistant to first-line treatment, including gemcitabine. Recent studies have indicated that endothelial cell (EC) focal adhesion kinase (FAK) regulates DNA-damaging therapy-induced angiocrine factors and chemosensitivity in primary tumor models. Here, we show that inducible loss of EC-FAK in both orthotopic and spontaneous mouse models of PDAC is not sufficient to affect primary tumor growth but reduces liver and lung metastasis load and improves survival rates in gemcitabine-treated, but not untreated, mice. EC-FAK loss did not affect primary tumor angiogenesis, tumor blood vessel leakage, or early events in metastasis, including the numbers of circulating tumor cells, tumor cell homing, or metastatic seeding. Phosphoproteomics analysis showed a downregulation of the MAPK, RAF, and PAK signaling pathways in gemcitabine-treated FAK-depleted ECs compared with gemcitabine-treated wild-type ECs. Moreover, low levels of EC-FAK correlated with increased survival and reduced relapse in gemcitabine-treated patients with PDAC, supporting the clinical relevance of these findings. Altogether, we have identified a new role of EC-FAK in regulating PDAC metastasis upon gemcitabine treatment that impacts outcome. SIGNIFICANCE: These findings establish the potential utility of combinatorial endothelial cell FAK targeting together with gemcitabine in future clinical applications to control metastasis in patients with pancreatic ductal adenocarcinoma.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Desoxicitidina/análogos & derivados , Células Endoteliais/patologia , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Camundongos , Recidiva Local de Neoplasia , Neoplasias Pancreáticas/patologia , Gencitabina , Neoplasias Pancreáticas
6.
Cell Rep ; 38(4): 110227, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35081338

RESUMO

In pancreatic ductal adenocarcinoma (PDAC), differentiation of pancreatic stellate cells (PSCs) into myofibroblast-like cancer-associated fibroblasts (CAFs) can both promote and suppress tumor progression. Here, we show that the Rho effector protein kinase N2 (PKN2) is critical for PSC myofibroblast differentiation. Loss of PKN2 is associated with reduced PSC proliferation, contractility, and alpha-smooth muscle actin (α-SMA) stress fibers. In spheroid co-cultures with PDAC cells, loss of PKN2 prevents PSC invasion but, counter-intuitively, promotes invasive cancer cell outgrowth. PKN2 deletion induces a myofibroblast to inflammatory CAF switch in the PSC matrisome signature both in vitro and in vivo. Further, deletion of PKN2 in the pancreatic stroma induces more locally invasive, orthotopic pancreatic tumors. Finally, we demonstrate that a PKN2KO matrisome signature predicts poor outcome in pancreatic and other solid human cancers. Our data indicate that suppressing PSC myofibroblast function can limit important stromal tumor-suppressive mechanisms, while promoting a switch to a cancer-supporting CAF phenotype.


Assuntos
Invasividade Neoplásica/patologia , Neoplasias Pancreáticas/patologia , Células Estreladas do Pâncreas/patologia , Animais , Humanos , Camundongos , Células Estreladas do Pâncreas/metabolismo , Fenótipo , Proteína Quinase C/metabolismo , Microambiente Tumoral/fisiologia
7.
J Pathol ; 256(2): 235-247, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34743335

RESUMO

A common limitation of cancer treatments is chemotherapy resistance. We have previously identified that endothelial cell (EC)-specific deletion of focal adhesion kinase (FAK) sensitises tumour cells to DNA-damaging therapies, reducing tumour growth in mice. The present study addressed the kinase activity dependency of EC FAK sensitisation to the DNA-damaging chemotherapeutic drug, doxorubicin. FAK is recognised as a therapeutic target in tumour cells, leading to the development of a range of inhibitors, the majority being ATP competitive kinase inhibitors. We demonstrate that inactivation of EC FAK kinase domain (kinase dead; EC FAK-KD) in established subcutaneous B16F0 tumours improves melanoma cell sensitisation to doxorubicin. Doxorubicin treatment in EC FAK-KD mice reduced the percentage change in exponential B16F0 tumour growth further than in wild-type mice. There was no difference in tumour blood vessel numbers, vessel perfusion or doxorubicin delivery between genotypes, suggesting a possible angiocrine effect on the regulation of tumour growth. Doxorubicin reduced perivascular malignant cell proliferation, while enhancing perivascular tumour cell apoptosis and DNA damage in tumours grown in EC FAK-KD mice 48 h after doxorubicin injection. Human pulmonary microvascular ECs treated with the pharmacological FAK kinase inhibitors defactinib, PF-562,271 or PF-573,228 in combination with doxorubicin also reduced cytokine expression levels. Together, these data suggest that targeting EC FAK kinase activity may alter angiocrine signals that correlate with improved acute tumour cell chemosensitisation. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Células Endoteliais/enzimologia , Quinase 1 de Adesão Focal/metabolismo , Melanoma Experimental/enzimologia , Neovascularização Fisiológica , Neoplasias Cutâneas/enzimologia , Inibidores da Angiogênese/farmacologia , Animais , Antibióticos Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Citocinas/metabolismo , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Quinase 1 de Adesão Focal/antagonistas & inibidores , Quinase 1 de Adesão Focal/genética , Humanos , Masculino , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/genética , Melanoma Experimental/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Carga Tumoral
8.
Cancers (Basel) ; 13(20)2021 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-34680355

RESUMO

Several strategies have been developed to modulate the tumour vasculature for cancer therapy including anti-angiogenesis and vascular normalisation. Vasculature modulation results in changes to the tumour microenvironment including oxygenation and immune cell infiltration, therefore lending itself to combination with cancer therapy. The development of immunotherapies has led to significant improvements in cancer treatment. Particularly promising are immune checkpoint blockade and CAR T cell therapies, which use antibodies against negative regulators of T cell activation and T cells reprogrammed to better target tumour antigens, respectively. However, while immunotherapy is successful in some patients, including those with advanced or metastatic cancers, only a subset of patients respond. Therefore, better predictors of patient response and methods to overcome resistance warrant investigation. Poor, or periphery-limited, T cell infiltration in the tumour is associated with poor responses to immunotherapy. Given that (1) lymphocyte recruitment requires leucocyte-endothelial cell adhesion and (2) the vasculature controls tumour oxygenation and plays a pivotal role in T cell infiltration and activation, vessel targeting strategies including anti-angiogenesis and vascular normalisation in combination with immunotherapy are providing possible new strategies to enhance therapy. Here, we review the progress of vessel modulation in enhancing immunotherapy efficacy.

10.
Cell Mol Gastroenterol Hepatol ; 12(5): 1543-1565, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34252585

RESUMO

BACKGROUND AND AIMS: The presence of tertiary lymphoid structures (TLSs) may confer survival benefit to patients with pancreatic ductal adenocarcinoma (PDAC), in an otherwise immunologically inert malignancy. Yet, the precise role in PDAC has not been elucidated. Here, we aim to investigate the structure and role of TLSs in human and murine pancreatic cancer. METHODS: Multicolor immunofluorescence and immunohistochemistry were used to fully characterize TLSs in human and murine (transgenic [KPC (KrasG12D, p53R172H, Pdx-1-Cre)] and orthotopic) pancreatic cancer. An orthotopic murine model was developed to study the development of TLSs and the effect of the combined chemotherapy and immunotherapy on tumor growth. RESULTS: Mature, functional TLSs are not ubiquitous in human PDAC and KPC murine cancers and are absent in the orthotopic murine model. TLS formation can be induced in the orthotopic model of PDAC after intratumoral injection of lymphoid chemokines (CXCL13/CCL21). Coadministration of systemic chemotherapy (gemcitabine) and intratumoral lymphoid chemokines into orthotopic tumors altered immune cell infiltration ,facilitating TLS induction and potentiating antitumor activity of chemotherapy. This resulted in significant tumor reduction, an effect not achieved by either treatment alone. Antitumor activity seen after TLS induction is associated with B cell-mediated dendritic cell activation. CONCLUSIONS: This study provides supportive evidence that TLS induction may potentiate the antitumor activity of chemotherapy in a murine model of PDAC. A detailed understanding of TLS kinetics and their induction, owing to multiple host and tumor factors, may help design personalized therapies harnessing the potential of immune-oncology.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Pancreáticas/imunologia , Estruturas Linfoides Terciárias/imunologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Animais , Apresentação de Antígeno , Antineoplásicos/uso terapêutico , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos B/patologia , Biomarcadores , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Centro Germinativo , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/patologia , Estruturas Linfoides Terciárias/tratamento farmacológico , Estruturas Linfoides Terciárias/patologia , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Angiogenesis ; 24(3): 471-482, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33730293

RESUMO

Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that is overexpressed in many cancer types and in vivo studies have shown that vascular endothelial cell FAK expression and FAK-phosphorylation at tyrosine (Y) 397, and subsequently FAK-Y861, are important in tumour angiogenesis. Pericytes also play a vital role in regulating tumour blood vessel stabilisation, but the specific involvement of pericyte FAK-Y397 and FAK-Y861 phosphorylation in tumour blood vessels is unknown. Using PdgfrßCre + ;FAKWT/WT, PdgfrßCre + ;FAKY397F/Y397F and PdgfrßCre + ;FAKY861F/Y861F mice, our data demonstrate that Lewis lung carcinoma tumour growth, tumour blood vessel density, blood vessel perfusion and pericyte coverage were affected only in late stage tumours in PdgfrßCre + ;FAKY861F/Y861F but not PdgfrßCre + ;FAKY397F/Y397F mice. Further examination indicates a dual role for pericyte FAK-Y861 phosphorylation in the regulation of tumour vessel regression and also in the control of pericyte derived signals that influence apoptosis in cancer cells. Overall this study identifies the role of pericyte FAK-Y861 in the regulation of tumour vessel regression and tumour growth control and that non-phosphorylatable FAK-Y861F in pericytes reduces tumour growth and blood vessel density.


Assuntos
Apoptose , Carcinoma Pulmonar de Lewis , Quinase 1 de Adesão Focal , Mutação de Sentido Incorreto , Proteínas de Neoplasias , Neovascularização Patológica , Pericitos/enzimologia , Substituição de Aminoácidos , Animais , Carcinoma Pulmonar de Lewis/enzimologia , Carcinoma Pulmonar de Lewis/genética , Quinase 1 de Adesão Focal/genética , Quinase 1 de Adesão Focal/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neovascularização Patológica/enzimologia , Neovascularização Patológica/genética , Fosforilação
12.
JAMA Netw Open ; 3(10): e2019304, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33107920

RESUMO

Importance: Determining the risk of relapse after neoadjuvant chemotherapy in patients with locally advanced breast cancer is required to offer alternative therapeutic strategies. Objective: To examine whether endothelial cell phosphorylated-focal adhesion kinase (EC-pY397-FAK) expression in patients with treatment-naive locally advanced breast cancer is a biomarker for chemotherapy sensitivity and is associated with survival after neoadjuvant chemotherapy. Design, Setting, and Participants: In this prognostic study, expression levels of EC-pY397-FAK and tumor cell (TC)-pY397-FAK were determined by immunohistochemistry in prechemotherapy core biopsies from 82 female patients with locally advanced breast cancer treated with anthracycline-based combination neoadjuvant chemotherapy at Nottingham City Hospital in Nottingham, UK. Median follow-up time was 67 months. The study was conducted from December 1, 2010, to September 28, 2019, and data analysis was performed from October 2, 2019, to March 31, 2020. Exposures: All women underwent surgery followed by adjuvant radiotherapy and, if tumors were estrogen receptor-positive, 5-year tamoxifen treatment. Main Outcomes and Measures: Outcomes were pathologic complete response and 5-year relapse-free survival examined using Kaplan-Meier, univariable logistic, multivariable logistic, and Cox proportional hazards models. Results: A total of 82 women (age, 29-76 years) with locally advanced breast cancer (stage IIA-IIIC) were included. Of these, 21 women (26%) had high EC-pY397-FAK expression that was associated with estrogen receptor positivity (71% vs 46%; P = .04), progesterone receptor positivity (67% vs 39%; P = .03), high Ki67 (86% vs 41%; P < .001), 4-immunohistochemically stained luminal-B (52% vs 8%; P < .001), higher tumor category (T3/T4 category: 90% vs 59%; P = .01), high lymph node category (N2-3 category: 43% vs 5%; P < .001), and high tumor node metastasis stage (IIIA-IIIC: 90% vs 66%; P = .03). Of 21 patients with high EC-pY397-FAK expression levels, none showed pathologic complete response, compared with 11 of 61 patients with low EC-pY397-FAK expression levels who showed pathologic complete response (odds ratio, 0.70; 95% CI, 0.61-0.82; P = .04). High EC-pY397-FAK expression levels and high blood vessel density (BVD) were associated with shorter 5-year relapse-free survival compared with those with low EC-pY397-FAK expression levels (hazard ratio [HR], 2.21; 95% CI, 1.17-4.20; P = .01) and low BVD (HR, 2.2; 95% CI, 1.15-4.35; P = .02). High TC-pY397-FAK expression levels in 15 of 82 women (18%) were not associated significantly with pathologic complete response or 5-year relapse-free survival. A multivariable Cox regression model for 5-year relapse-free survival indicated that high EC-pY397-FAK expression levels was an independent poor prognostic factor after controlling for other validated prognostic factors (HR, 3.91; 95% CI, 1.42-10.74; P = .01). Combined analysis of EC-pY397-FAK expression levels, TC-pY397-FAK expression levels, and BVD improved prognostic significance over individually tested features. Conclusions and Relevance: The findings of this study suggest that low EC-pY397-FAK expression levels are associated with chemotherapy sensitivity and improved 5-year relapse-free survival after systemic therapy. Combined analysis of high EC-pY397-FAK expression levels, high TC-pY397-FAK expression levels, and high BVD appeared to identify a high-risk population.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Quinase 1 de Adesão Focal/metabolismo , Adulto , Idoso , Neoplasias da Mama/patologia , Feminino , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Prognóstico , Taxa de Sobrevida
13.
Nat Commun ; 11(1): 2810, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32499572

RESUMO

The overexpression of the protein tyrosine kinase, Focal adhesion kinase (FAK), in endothelial cells has implicated its requirement in angiogenesis and tumour growth, but how pericyte FAK regulates tumour angiogenesis is unknown. We show that pericyte FAK regulates tumour growth and angiogenesis in multiple mouse models of melanoma, lung carcinoma and pancreatic B-cell insulinoma and provide evidence that loss of pericyte FAK enhances Gas6-stimulated phosphorylation of the receptor tyrosine kinase, Axl with an upregulation of Cyr61, driving enhanced tumour growth. We further show that pericyte derived Cyr61 instructs tumour cells to elevate expression of the proangiogenic/protumourigenic transmembrane receptor Tissue Factor. Finally, in human melanoma we show that when 50% or more tumour blood vessels are pericyte-FAK negative, melanoma patients are stratified into those with increased tumour size, enhanced blood vessel density and metastasis. Overall our data uncover a previously unknown mechanism of tumour growth by pericytes that is controlled by pericyte FAK.


Assuntos
Proteína Rica em Cisteína 61/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neovascularização Patológica , Pericitos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Aorta Torácica/patologia , Carcinoma Pulmonar de Lewis/metabolismo , Adesão Celular , Proliferação de Células , Feminino , Quinase 1 de Adesão Focal/genética , Humanos , Linfocinas/metabolismo , Masculino , Melanoma/irrigação sanguínea , Melanoma/metabolismo , Melanoma Experimental , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias/patologia , Fator de Crescimento Placentário/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteínas Proto-Oncogênicas c-sis/metabolismo , Transdução de Sinais , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor Tirosina Quinase Axl
14.
Cell ; 181(6): 1346-1363.e21, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32473126

RESUMO

Enhanced blood vessel (BV) formation is thought to drive tumor growth through elevated nutrient delivery. However, this observation has overlooked potential roles for mural cells in directly affecting tumor growth independent of BV function. Here we provide clinical data correlating high percentages of mural-ß3-integrin-negative tumor BVs with increased tumor sizes but no effect on BV numbers. Mural-ß3-integrin loss also enhances tumor growth in implanted and autochthonous mouse tumor models with no detectable effects on BV numbers or function. At a molecular level, mural-cell ß3-integrin loss enhances signaling via FAK-p-HGFR-p-Akt-p-p65, driving CXCL1, CCL2, and TIMP-1 production. In particular, mural-cell-derived CCL2 stimulates tumor cell MEK1-ERK1/2-ROCK2-dependent signaling and enhances tumor cell survival and tumor growth. Overall, our data indicate that mural cells can control tumor growth via paracrine signals regulated by ß3-integrin, providing a previously unrecognized mechanism of cancer growth control.


Assuntos
Integrina beta3/metabolismo , Neoplasias/metabolismo , Carga Tumoral/fisiologia , Animais , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Feminino , Humanos , Masculino , Melanoma Experimental/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/fisiologia
15.
Cancer Res ; 80(12): 2586-2598, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32303578

RESUMO

The angiopoietin (Angpt)-TIE signaling pathway controls vascular maturation and maintains the quiescent phenotype of resting vasculature. The contextual agonistic and antagonistic Tie2 ligand ANGPT2 is believed to be exclusively produced by endothelial cells, disrupting constitutive ANGPT1-TIE2 signaling to destabilize the microvasculature during pathologic disorders like inflammation and cancer. However, scattered reports have also portrayed tumor cells as a source of ANGPT2. Employing ISH-based detection of ANGPT2, we found strong tumor cell expression of ANGPT2 in a subset of patients with melanoma. Comparative analysis of biopsies revealed a higher fraction of ANGPT2-expressing tumor cells in metastatic versus primary sites. Tumor cell-expressed Angpt2 was dispensable for primary tumor growth, yet in-depth analysis of primary tumors revealed enhanced intratumoral necrosis upon silencing of tumor cell Angpt2 expression in the absence of significant immune and vascular alterations. Global transcriptional profiling of Angpt2-deficient tumor cells identified perturbations in redox homeostasis and an increased response to cellular oxidative stress. Ultrastructural analyses illustrated a significant increase of dysfunctional mitochondria in Angpt2-silenced tumor cells, thereby resulting in enhanced reactive oxygen species (ROS) production and downstream MAPK stress signaling. Functionally, enhanced ROS in Angpt2-silenced tumor cells reduced colonization potential in vitro and in vivo. Taken together, these findings uncover the hitherto unappreciated role of tumor cell-expressed ANGPT2 as an autocrine-positive regulator of metastatic colonization and validate ANGPT2 as a therapeutic target for a well-defined subset of patients with melanoma. SIGNIFICANCE: This study reveals that tumor cells can be a source of ANGPT2 in the tumor microenvironment and that tumor cell-derived ANGPT2 augments metastatic colonization by protecting tumor cells from oxidative stress.


Assuntos
Angiopoietina-2/metabolismo , Melanoma/secundário , Nevo/patologia , Neoplasias Cutâneas/patologia , Angiopoietina-2/genética , Animais , Comunicação Autócrina , Biópsia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células Endoteliais da Veia Umbilical Humana , Humanos , Estimativa de Kaplan-Meier , Sistema de Sinalização das MAP Quinases , Melanoma/mortalidade , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Pele/patologia , Neoplasias Cutâneas/mortalidade , Análise Serial de Tecidos , Microambiente Tumoral
16.
Nat Commun ; 11(1): 1290, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32157087

RESUMO

Emerging evidence suggests that cancer cell metabolism can be regulated by cancer-associated fibroblasts (CAFs), but the mechanisms are poorly defined. Here we show that CAFs regulate malignant cell metabolism through pathways under the control of FAK. In breast and pancreatic cancer patients we find that low FAK expression, specifically in the stromal compartment, predicts reduced overall survival. In mice, depletion of FAK in a subpopulation of CAFs regulates paracrine signals that increase malignant cell glycolysis and tumour growth. Proteomic and phosphoproteomic analysis in our mouse model identifies metabolic alterations which are reflected at the transcriptomic level in patients with low stromal FAK. Mechanistically we demonstrate that FAK-depletion in CAFs increases chemokine production, which via CCR1/CCR2 on cancer cells, activate protein kinase A, leading to enhanced malignant cell glycolysis. Our data uncover mechanisms whereby stromal fibroblasts regulate cancer cell metabolism independent of genetic mutations in cancer cells.


Assuntos
Fibroblastos Associados a Câncer/enzimologia , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Neoplasias da Mama/irrigação sanguínea , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Quimiocinas/metabolismo , Feminino , Glicólise , Humanos , Masculino , Redes e Vias Metabólicas , Camundongos Endogâmicos C57BL , Neoplasias/irrigação sanguínea , Neoplasias Pancreáticas/irrigação sanguínea , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Fosfoproteínas/metabolismo , Células Estromais/metabolismo , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
17.
EMBO Mol Med ; 12(2): e10491, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31930708

RESUMO

During obesity, macrophages infiltrate the breast tissue leading to low-grade chronic inflammation, a factor considered responsible for the higher risk of breast cancer associated with obesity. Here, we formally demonstrate that breast epithelial cells acquire malignant properties when exposed to medium conditioned by macrophages derived from human healthy donors. These effects were mediated by the breast cancer oncogene IKKε and its downstream target-the serine biosynthesis pathway as demonstrated by genetic or pharmacological tools. Furthermore, amlexanox, an FDA-approved drug targeting IKKε and its homologue TBK1, delayed in vivo tumour formation in a combined genetic mouse model of breast cancer and high-fat diet-induced obesity/inflammation. Finally, in human breast cancer tissues, we validated the link between inflammation-IKKε and alteration of cellular metabolism. Altogether, we identified a pathway connecting obesity-driven inflammation to breast cancer and a potential therapeutic strategy to reduce the risk of breast cancer associated with obesity.


Assuntos
Neoplasias da Mama/patologia , Quinase I-kappa B , Macrófagos/citologia , Proteínas Serina-Treonina Quinases/metabolismo , Serina , Aminopiridinas/farmacologia , Animais , Meios de Cultivo Condicionados , Células Epiteliais/patologia , Feminino , Humanos , Quinase I-kappa B/metabolismo , Inflamação , Glândulas Mamárias Humanas/patologia , Camundongos , Obesidade , Serina/biossíntese
18.
Eur Heart J ; 41(9): 1006-1020, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30903134

RESUMO

AIMS: C-type natriuretic peptide (CNP) is an essential endothelium-derived signalling species that governs vascular homoeostasis; CNP is also expressed in the heart but an intrinsic role for the peptide in cardiac function is not established. Herein, we employ unique transgenic strains with cell-specific deletion of CNP to define a central (patho)physiological capacity of CNP in maintaining heart morphology and contractility. METHODS AND RESULTS: Cardiac structure and function were explored in wild type (WT), cardiomyocyte (cmCNP-/-), endothelium (ecCNP-/-), and fibroblast (fbCNP-/-)-specific CNP knockout mice, and global natriuretic peptide receptor (NPR)-B-/-, and NPR-C-/- animals at baseline and in experimental models of myocardial infarction and heart failure (HF). Endothelium-specific deletion of CNP resulted in impaired coronary responsiveness to endothelium-dependent- and flow-mediated-dilatation; changes mirrored in NPR-C-/- mice. Ex vivo, global ischaemia resulted in larger infarcts and diminished functional recovery in cmCNP-/- and NPR-C-/-, but not ecCNP-/-, vs. WT. The cardiac phenotype of cmCNP-/-, fbCNP-/-, and NPR-C-/- (but not ecCNP-/- or NPR-B-/-) mice was more severe in pressure overload- and sympathetic hyperactivation-induced HF compared with WT; these adverse effects were rescued by pharmacological CNP administration in WT, but not NPR-C-/-, mice. At a molecular level, CNP/NPR-C signalling is impaired in human HF but attenuates activation of well-validated pro-hypertrophic and pro-fibrotic pathways. CONCLUSION: C-type natriuretic peptide of cardiomyocyte, endothelial and fibroblast origins co-ordinates and preserves cardiac structure, function, and coronary vasoreactivity via activation of NPR-C. Targeting NPR-C may prove an innovative approach to treating HF and ischaemic cardiovascular disorders.


Assuntos
Insuficiência Cardíaca , Peptídeo Natriurético Tipo C , Animais , Fator Natriurético Atrial , Camundongos , Camundongos Knockout , Miócitos Cardíacos , Peptídeo Natriurético Tipo C/genética , Transdução de Sinais
19.
EMBO Mol Med ; 12(2): e11663, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31858727

RESUMO

Pathological angiogenesis contributes to tumour progression as well as to chronic inflammatory diseases. In this issue of EMBO Molecular Medicine, Esteban and co-workers identify endothelial cell MT1-MMP as a key regulator of intussusceptive angiogenesis (IA) in inflammatory colitis. Thrombospondin 1 (TSP1) cleavage by MT1-MMP results in the binding of the c-terminal fragment of TSP1 to αvß3 integrin, which induces nitric oxide (NO) production, vasodilation and further initiation of IA. This novel control mechanism of inflammatory IA points towards promising new therapeutic targets for inflammatory bowel disease.


Assuntos
Metaloproteinase 14 da Matriz , Metaloendopeptidases , Células Endoteliais , Humanos , Metaloproteinases da Matriz Associadas à Membrana , Neovascularização Patológica
20.
J Pathol ; 249(4): 523-535, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31424556

RESUMO

Coronary microvascular dysfunction combined with maladaptive cardiomyocyte morphology and energetics is a major contributor to heart failure advancement. Thus, dually enhancing cardiac angiogenesis and targeting cardiomyocyte function to slow, or reverse, the development of heart failure is a logical step towards improved therapy. We present evidence for the potential to repurpose a former anti-cancer Arg-Gly-Asp (RGD)-mimetic pentapeptide, cilengitide, here used at low doses. Cilengitide targets αvß3 integrin and this protein is upregulated in human dilated and ischaemic cardiomyopathies. Treatment of mice after abdominal aortic constriction (AAC) surgery with low-dose cilengitide (ldCil) enhances coronary angiogenesis and directly affects cardiomyocyte hypertrophy with an associated reduction in disease severity. At a molecular level, ldCil treatment has a direct effect on cardiac endothelial cell transcriptomic profiles, with a significant enhancement of pro-angiogenic signalling pathways, corroborating the enhanced angiogenic phenotype after ldCil treatment. Moreover, ldCil treatment of Angiotensin II-stimulated AngII-stimulated cardiomyocytes significantly restores transcriptomic profiles similar to those found in normal human heart. The significance of this finding is enhanced by transcriptional similarities between AngII-treated cardiomyocytes and failing human hearts. Taken together, our data provide evidence supporting a possible new strategy for improved heart failure treatment using low-dose RGD-mimetics with relevance to human disease. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Cardiomegalia/tratamento farmacológico , Fármacos Cardiovasculares/farmacologia , Reposicionamento de Medicamentos , Insuficiência Cardíaca/tratamento farmacológico , Integrina alfaVbeta3/antagonistas & inibidores , Miócitos Cardíacos/efeitos dos fármacos , Venenos de Serpentes/farmacologia , Angiotensina II/farmacologia , Animais , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatologia , Estudos de Casos e Controles , Células Cultivadas , Modelos Animais de Doenças , Fibrose , Regulação da Expressão Gênica , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Humanos , Integrina alfaVbeta3/metabolismo , Masculino , Camundongos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica , Transdução de Sinais , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...