Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 3735, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349317

RESUMO

Ventilation of health hazardous aerosol pollution within the planetary boundary layer (PBL) - the lowest layer of the atmosphere - is dependent upon turbulent mixing, which again is closely linked to the height of the PBL. Here we show that emissions of both CO2 and absorbing aerosols such as black carbon influence the number of severe air pollution episodes through impacts on turbulence and PBL height. While absorbing aerosols cause increased boundary layer stability and reduced turbulence through atmospheric heating, CO2 has the opposite effect over land through surface warming. In future scenarios with increasing CO2 concentrations and reduced aerosol emissions, we find that around 10% of the world's population currently living in regions with high pollution levels are likely to experience a particularly strong increase in turbulence and PBL height, and thus a reduction in intense pollution events. Our results highlight how these boundary layer processes provide an added positive impact of black carbon mitigation to human health.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Poluentes Atmosféricos/análise , Dióxido de Carbono , Monitoramento Ambiental/métodos , Poluição do Ar/prevenção & controle , Poluição do Ar/análise , Aerossóis/análise , Fuligem/análise , Carbono
2.
Sci Data ; 9(1): 123, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35354809

RESUMO

This data descriptor reports the main scientific values from General Circulation Models (GCMs) in the Precipitation Driver and Response Model Intercomparison Project (PDRMIP). The purpose of the GCM simulations has been to enhance the scientific understanding of how changes in greenhouse gases, aerosols, and incoming solar radiation perturb the Earth's radiation balance and its climate response in terms of changes in temperature and precipitation. Here we provide global and annual mean results for a large set of coupled atmospheric-ocean GCM simulations and a description of how to easily extract files from the dataset. The simulations consist of single idealized perturbations to the climate system and have been shown to achieve important insight in complex climate simulations. We therefore expect this data set to be valuable and highly used to understand simulations from complex GCMs and Earth System Models for various phases of the Coupled Model Intercomparison Project.

3.
J Geophys Res Atmos ; Volume 122(Iss 21): 11462-11481, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-32441705

RESUMO

We investigate the climate response to increased concentrations of black carbon (BC), as part of the Precipitation Driver Response Model Intercomparison Project (PDRMIP). A tenfold increase in BC is simulated by 9 global coupled-climate models, producing a model-median effective radiative forcing (ERF) of 0.82 (ranging from 0.41 to 2.91) Wm-2, and a warming of 0.67 (0.16 to 1.66) K globally and 1.24 (0.26 to 4.31) K in the Arctic. A strong positive instantaneous radiative forcing (median of 2.10 Wm-2 based on five of the models) is countered by negative rapid adjustments (-0.64 Wm-2 for the same five models), which dampen the total surface temperature signal. Unlike other drivers of climate change, the response of temperature and cloud profiles to the BC forcing is dominated by rapid adjustments. Low-level cloud amounts increase for all models, while higher-level clouds are diminished. The rapid temperature response is particularly strong above 400 hPa, where increased atmospheric stabilization and reduced cloud cover contrast the response pattern of the other drivers. In conclusion, we find that this substantial increase in BC concentrations does have considerable impacts on important aspects of the climate system. However, some of these effects tend to offset one another, leaving a relatively small global warming of 0.47 K per Wm-2 - about 20 % lower than the response to a doubling of CO2. Translating the tenfold increase in BC to the present-day impact of anthropogenic BC (given the emissions used in this work) would leave a warming of merely 0.07 K.

5.
Nat Commun ; 7: 11236, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27068129

RESUMO

Observations indicate a precipitation decline over large parts of southern Africa since the 1950s. Concurrently, atmospheric concentrations of greenhouse gases and aerosols have increased due to anthropogenic activities. Here we show that local black carbon and organic carbon aerosol emissions from biomass burning activities are a main cause of the observed decline in southern African dry season precipitation over the last century. Near the main biomass burning regions, global and regional modelling indicates precipitation decreases of 20-30%, with large spatial variability. Increasing global CO2 concentrations further contribute to precipitation reductions, somewhat less in magnitude but covering a larger area. Whereas precipitation changes from increased CO2 are driven by large-scale circulation changes, the increase in biomass burning aerosols causes local drying of the atmosphere. This study illustrates that reducing local biomass burning aerosol emissions may be a useful way to mitigate reduced rainfall in the region.


Assuntos
Biomassa , Incêndios , Chuva , África Austral , Atmosfera , Modelos Teóricos
6.
Environ Sci Technol ; 48(22): 13273-9, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25347302

RESUMO

The changing climate in the Arctic opens new shipping routes. A shift to shorter Arctic transit will, however, incur a climate penalty over the first one and a half centuries. We investigate the net climate effect of diverting a segment of Europe-Asia container traffic from the Suez to an Arctic transit route. We find an initial net warming for the first one-and-a-half centuries, which gradually declines and transitions to net cooling as the effects of CO2 reductions become dominant, resulting in climate mitigation only in the long term. Thus, the possibilities for shifting shipping to the Arctic confront policymakers with the question of how to weigh a century-scale warming with large uncertainties versus a long-term climate benefit from CO2 reductions.


Assuntos
Clima , Navios , Meios de Transporte , Regiões Árticas , Ásia , Europa (Continente) , Internacionalidade , Temperatura , Incerteza
7.
Nat Commun ; 5: 5065, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25255429

RESUMO

Black carbon (BC), unlike most aerosol types, absorbs solar radiation. However, the quantification of its climate impact is uncertain and presently under debate. Recently, attention has been drawn both to a likely underestimation of global BC emissions in climate models, and an overestimation of BC at high altitudes. Here we show that doubling present day BC emissions in a model simulation, while reducing BC lifetime based on observational evidence, leaves the direct aerosol effect of BC virtually unchanged. Increased emissions, together with increased wet removal that reduces the lifetime, yields modelled BC vertical profiles that are in strongly improved agreement with recent aircraft observations. Furthermore, we explore the consequences of an altered BC profile in a global circulation model, and show that both the vertical profile of BC and rapid climate adjustments need to be taken into account in order to assess the total climate impact of BC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...