Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 13(7)2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201873

RESUMO

The aim of this study was the isolation and characterization, including the phage effect on honeybees in laboratory conditions, of phages active against Paenibacillus larvae, the causative agent of American Foulbrood-a highly infective and easily spreading disease occurring in honeybee larva, and subsequently the development of a preparation to prevent and treat this dangerous disease. From the tested material (over 2500 samples) 35 Paenibacillus spp. strains were obtained and used to search for phages. Five phages specific to Paenibacillus were isolated and characterized (ultrastructure, morphology, biological properties, storage stability, and genome sequence). The characteristics were performed to obtain knowledge of their lytic potential and compose the final phage cocktail with high antibacterial potential and intended use of future field application. Preliminary safety studies have also been carried out on healthy bees, which suggest that the phage preparation administered is harmless.


Assuntos
Bacteriófagos/isolamento & purificação , Bacteriófagos/fisiologia , Abelhas/microbiologia , Paenibacillus larvae/virologia , Animais , Bacteriólise , Bacteriófagos/ultraestrutura , Endotoxinas/metabolismo , Especificidade de Hospedeiro , Paenibacillus larvae/metabolismo , Polônia
2.
Front Microbiol ; 11: 1913, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849478

RESUMO

American foulbrood is one of the most serious and yet unsolved problems of beekeeping around the world, because it causes a disease leading to the weakening of the vitality of honey bee populations and huge economic losses both in agriculture and horticulture. The etiological agent of this dangerous disease is an extremely pathogenic spore-forming bacterium, Paenibacillus larvae, which makes treatment very difficult. What is more, the use of antibiotics in the European Union is forbidden due to restrictions related to the prevention of the presence of antibiotic residues in honey, as well as the global problem of spreading antibiotic resistance in case of bacterial strains. The only available solution is burning of entire bee colonies, which results in large economic losses. Therefore, bacteriophages and their lytic enzymes can be a real effective alternative in the treatment and prevention of this Apis mellifera disease. In this review, we summarize phage characteristics that make them a potentially useful tool in the fight against American foulbrood. In addition, we gathered data regarding phage application that have been described so far, and attempted to show practical implications and possible limitations of their usage.

3.
Phage (New Rochelle) ; 1(2): 91-99, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36147897

RESUMO

Background: Bacteriophages may induce specific antibodies after natural exposure to phages or after phage therapy. As such, phage-specific antibodies might impact phage bioavailability in vivo, although limited non-neutralizing or insignificant effects have also been reported. Materials and Methods: Here, we report antibody induction against PB1-related phages (Pseudomonas viruses LMA2, F8, DP1) in mice over an 80-day period, for a healthy population of humans, and in patients undergoing phage therapy (oral and/or topical treatment). Results: All phages effectively induced specific immunoglobulin M and immunoglobulin G in mice. Phage-specific antibodies were observed in humans, whereas recombinant virion proteins (PB1 gp22, gp29) did not induce phage-neutralizing antibodies, either in mice or in humans. The healthy human population was differentiated for frequency of phage-neutralizing antibodies. Conclusions: These data can hold key considerations for phage therapy cocktail design, as highly similar phages can still be highly complementary in cases where specific immune response hinders therapeutic use of phages.

4.
Microb Biotechnol ; 12(4): 730-741, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31037835

RESUMO

Bacteriophages draw scientific attention in medicine and biotechnology, including phage engineering, widely used to shape biological properties of bacteriophages. We developed engineered T4-derived bacteriophages presenting seven types of tissue-homing peptides. We evaluated phage accumulation in targeted tissues, spleen, liver and phage circulation in blood (in mice). Contrary to expectations, accumulation of engineered bacteriophages in targeted organs was not observed, but instead, three engineered phages achieved tissue titres up to 2 orders of magnitude lower than unmodified T4. This correlated with impaired survival of these phages in the circulation. Thus, engineering of T4 phage resulted in the short-circulating phage phenotype. We found that the complement system inactivated engineered phages significantly more strongly than unmodified T4, while no significant differences in phages' susceptibility to phagocytosis or immunogenicity were found. The short-circulating phage phenotype of the engineered phages suggests that natural phages, at least those propagating on commensal bacteria of animals and humans, are naturally optimized to escape rapid neutralization by the immune system. In this way, phages remain active for longer when inside mammalian bodies, thus increasing their chance of propagating on commensal bacteria. The effect of phage engineering on phage pharmacokinetics should be considered in phage design for medical purposes.


Assuntos
Bacteriófago T4/imunologia , Sangue/virologia , Proteínas Recombinantes/metabolismo , Proteínas Virais/metabolismo , Tropismo Viral , Administração Intravenosa , Animais , Bacteriófago T4/genética , Proteínas do Sistema Complemento/metabolismo , Camundongos , Viabilidade Microbiana , Proteínas Recombinantes/genética , Proteínas Virais/genética
5.
PLoS One ; 13(10): e0205995, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30339682

RESUMO

Only 3% of phage genomes in NCBI nucleotide database represent phages that are active against Streptococcus sp. With the aim to increase general awareness of phage diversity, we isolated two bacteriophages, Str01 and Str03, active against health-threatening Group A Streptococcus (GAS). Both phages are members of the Siphoviridae, but their analysis revealed that Str01 and Str03 do not belong to any known genus. We identified their structural proteins based on LC-ESI29 MS/MS and list their basic thermal stability and physico-chemical features including optimum pH. Annotated genomic sequences of the phages are deposited in GenBank (NCBI accession numbers KY349816 and KY363359, respectively).


Assuntos
Bacteriófagos/genética , Genoma Viral , Streptococcus pyogenes/virologia , Bacteriófagos/isolamento & purificação , Bacteriófagos/ultraestrutura , Genes Virais , Concentração de Íons de Hidrogênio , Espectrometria de Massas , Filogenia , Temperatura , Proteínas Virais/metabolismo , Vírion/genética
6.
Front Microbiol ; 7: 1112, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27471503

RESUMO

Bacteriophages that infect Gram-negative bacteria often bind to the bacterial surface by interaction of specific proteins with lipopolysaccharide (LPS). Short tail fiber proteins (tail adhesin, gp12) mediate adsorption of T4-like bacteriophages to Escherichia coli, binding surface proteins or LPS. Produced as a recombinant protein, gp12 retains its ability to bind LPS. Since LPS is able to exert a major impact on the immune response in animals and in humans, we have tested LPS-binding phage protein gp12 as a potential modulator of the LPS-induced immune response. We have produced tail adhesin gp12 in a bacterial expression system and confirmed its ability to form trimers and to bind LPS in vitro by dynamic light scattering. This product had no negative effect on mammalian cell proliferation in vitro. Further, no harmful effects of this protein were observed in mice. Thus, gp12 was used in combination with LPS in a murine model, and it decreased the inflammatory response to LPS in vivo, as assessed by serum levels of cytokines IL-1 alpha and IL-6 and by histopathological analysis of spleen, liver, kidney and lungs. Thus, in future studies gp12 may be considered as a potential tool for modulating and specifically for counteracting LPS-related physiological effects in vivo.

7.
Sci Rep ; 5: 14802, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26440922

RESUMO

Emerging bacterial antibiotic resistance draws attention to bacteriophages as a therapeutic alternative to treat bacterial infection. Examples of phage that combat bacteria abound. However, despite careful testing of antibacterial activity in vitro, failures nevertheless commonly occur. We investigated immunological response of phage antibacterial potency in vivo. Anti-phage activity of phagocytes, antibodies, and serum complement were identified by direct testing and by high-resolution fluorescent microscopy. We accommodated the experimental data into a mathematical model. We propose a universal schema of innate and adaptive immunity impact on phage pharmacokinetics, based on the results of our numerical simulations. We found that the mammalian-host response to infecting bacteria causes the concomitant removal of phage from the system. We propose the notion that this effect as an indirect pathway of phage inhibition by bacteria with significant relevance for the clinical outcome of phage therapy.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Mamíferos/imunologia , Fagos de Pseudomonas/fisiologia , Imunidade Adaptativa , Animais , Imunidade Inata , Lipopolissacarídeos/farmacologia , Macrófagos/microbiologia , Macrófagos/virologia , Masculino , Mamíferos/microbiologia , Mamíferos/virologia , Camundongos Endogâmicos C57BL , Microscopia Confocal/métodos , Modelos Teóricos , Fagocitose , Fagos de Pseudomonas/imunologia , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Síndrome de Resposta Inflamatória Sistêmica/virologia
8.
Viruses ; 7(8): 4783-99, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26308042

RESUMO

A specific humoral response to bacteriophages may follow phage application for medical purposes, and it may further determine the success or failure of the approach itself. We present a long-term study of antibody induction in mice by T4 phage applied per os: 100 days of phage treatment followed by 112 days without the phage, and subsequent second application of phage up to day 240. Serum and gut antibodies (IgM, IgG, secretory IgA) were analyzed in relation to microbiological status of the animals. T4 phage applied orally induced anti-phage antibodies when the exposure was long enough (IgG day 36, IgA day 79); the effect was related to high dosage. Termination of phage treatment resulted in a decrease of IgA again to insignificant levels. Second administration of phage induces secretory IgA sooner than that induced by the first administrations. Increased IgA level antagonized gut transit of active phage. Phage resistant E. coli dominated gut flora very late, on day 92. Thus, the immunological response emerges as a major factor determining phage survival in the gut. Phage proteins Hoc and gp12 were identified as highly immunogenic. A low response to exemplary foreign antigens (from Ebola virus) presented on Hoc was observed, which suggests that phage platforms can be used in oral vaccine design.


Assuntos
Anticorpos Antivirais/análise , Bacteriófago T4/imunologia , Sangue/imunologia , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/virologia , Imunidade nas Mucosas , Administração Oral , Animais , Antígenos Virais/genética , Antígenos Virais/imunologia , Proteínas do Capsídeo/imunologia , Ebolavirus/genética , Ebolavirus/imunologia , Escherichia coli/isolamento & purificação , Escherichia coli/virologia , Imunoglobulina A/análise , Imunoglobulina G/análise , Imunoglobulina M/análise , Estudos Longitudinais , Masculino , Camundongos Endogâmicos C57BL , Proteínas Estruturais Virais/imunologia
9.
Future Microbiol ; 10(2): 199-204, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25689532

RESUMO

While the true efficacy of phage therapy still requires formal confirmation in clinical trials, it continues to offer realistic potential treatment in patients in whom antibiotics have failed. Novel developments and approaches are therefore needed to ascertain that future clinical trials would evaluate the therapy in its optimal form thus allowing for reliable conclusions regarding the true value of phage therapy. In this article, we present our vision to develop and establish a bank of phages specific to most threatening pathogens and armed with homing peptides enabling their localization in infected tissues in densities assuring efficient and stable eradication of infection.


Assuntos
Infecções Bacterianas/terapia , Bacteriófagos/fisiologia , Animais , Antibacterianos/administração & dosagem , Humanos , Peptídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...