Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JACC Basic Transl Sci ; 8(10): 1298-1314, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38094687

RESUMO

Obesity-related heart failure with preserved ejection fraction (HFpEF) has become a well-recognized HFpEF subphenotype. Targeting the unfavorable cardiometabolic profile may represent a rational treatment strategy. This study investigated semaglutide, a glucagon-like peptide-1 receptor agonist that induces significant weight loss in patients with obesity and/or type 2 diabetes mellitus and has been associated with improved cardiovascular outcomes. In a mouse model of HFpEF that was caused by advanced aging, female sex, obesity, and type 2 diabetes mellitus, semaglutide, compared with weight loss induced by pair feeding, improved the cardiometabolic profile, cardiac structure, and cardiac function. Mechanistically, transcriptomic, and proteomic analyses revealed that semaglutide improved left ventricular cytoskeleton function and endothelial function and restores protective immune responses in visceral adipose tissue. Strikingly, treatment with semaglutide induced a wide array of favorable cardiometabolic effects beyond the effect of weight loss by pair feeding. Glucagon-like peptide-1 receptor agonists may therefore represent an important novel therapeutic option for treatment of HFpEF, especially when obesity-related.

2.
Nature ; 577(7789): 266-270, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31827282

RESUMO

Acute myeloid leukaemia (AML) is a heterogeneous disease characterized by transcriptional dysregulation that results in a block in differentiation and increased malignant self-renewal. Various epigenetic therapies aimed at reversing these hallmarks of AML have progressed into clinical trials, but most show only modest efficacy owing to an inability to effectively eradicate leukaemia stem cells (LSCs)1. Here, to specifically identify novel dependencies in LSCs, we screened a bespoke library of small hairpin RNAs that target chromatin regulators in a unique ex vivo mouse model of LSCs. We identify the MYST acetyltransferase HBO1 (also known as KAT7 or MYST2) and several known members of the HBO1 protein complex as critical regulators of LSC maintenance. Using CRISPR domain screening and quantitative mass spectrometry, we identified the histone acetyltransferase domain of HBO1 as being essential in the acetylation of histone H3 at K14. H3 acetylated at K14 (H3K14ac) facilitates the processivity of RNA polymerase II to maintain the high expression of key genes (including Hoxa9 and Hoxa10) that help to sustain the functional properties of LSCs. To leverage this dependency therapeutically, we developed a highly potent small-molecule inhibitor of HBO1 and demonstrate its mode of activity as a competitive analogue of acetyl-CoA. Inhibition of HBO1 phenocopied our genetic data and showed efficacy in a broad range of human cell lines and primary AML cells from patients. These biological, structural and chemical insights into a therapeutic target in AML will enable the clinical translation of these findings.


Assuntos
Histona Acetiltransferases/metabolismo , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Neoplásicas/metabolismo , Animais , Linhagem Celular Tumoral , Histona Acetiltransferases/química , Histona Acetiltransferases/genética , Humanos , Leucemia Mieloide Aguda/genética , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Estrutura Terciária de Proteína
3.
Cell Chem Biol ; 26(10): 1461-1468.e7, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31447350

RESUMO

Pyridoxal 5'-phosphate (PLP) is a versatile cofactor that catalyzes a plethora of chemical transformations within a cell. Although many human PLP-dependent enzymes (PLP-DEs) with crucial physiological and pathological roles are known, a global method enabling their cellular profiling is lacking. Here, we demonstrate the utility of a cofactor probe for the identification of human PLP-binding proteins in living cells. Striking selectivity of human pyridoxal kinase led to a customized labeling strategy covering a large fraction of known PLP-binding proteins across various cancer-derived cell lines. Labeling intensities of some PLP-DEs varied depending on the cell type while the overall protein expression levels of these proteins remained constant. In addition, we applied the methodology for in situ screening of PLP-antagonists and unraveled known binders as well as unknown off-targets. Taken together, our proteome-wide method to study PLP-DEs in human cancer-derived cells enables global understanding of the interactome of this important cofactor.


Assuntos
Proteínas de Transporte/metabolismo , Proteoma/metabolismo , Proteínas de Transporte/antagonistas & inibidores , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Células K562 , Modelos Moleculares , Estrutura Molecular , Penicilamina/farmacologia , Proteoma/antagonistas & inibidores
4.
Trends Biochem Sci ; 44(11): 943-960, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31296352

RESUMO

Proteins are decorated with a diverse array of post-translational modifications (PTMs) that regulate their spatial and temporal functions. Recent mass spectrometry (MS)-based studies have identified hundreds of thousands of PTM sites in mammalian proteomes. However, the signaling cues and enzymes regulating individual sites are often not known and their functional roles remain uncharacterized. Quantification of PTM site stoichiometry can help in prioritizing sites for functional analyses and is important for constructing mechanistic models of PTM-dependent protein regulation. Here, we review the concept of PTM site stoichiometry, critically evaluate the merits and drawbacks of different MS-based methods used for quantifying PTM site stoichiometry, and discuss the usefulness and limitations of stoichiometry in informing on the biological function of modified sites.


Assuntos
Espectrometria de Massas/métodos , Processamento de Proteína Pós-Traducional , Proteoma/química , Algoritmos , Animais , Sítios de Ligação , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas , Proteômica
5.
Bioorg Med Chem ; 26(22): 5896-5902, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30429095

RESUMO

Pantothenate kinase (PanK) catalyzes the transformation of pantothenate to 4'-phosphopantothenate, the first committed step in coenzyme A biosynthesis. While numerous pantothenate antimetabolites and PanK inhibitors have been reported for bacterial type I and type II PanKs, only a few weak inhibitors are known for bacterial type III PanK enzymes. Here, a series of pantothenate analogues were synthesized using convenient synthetic methodology. The compounds were exploited as small organic probes to compare the ligand preferences of the three different types of bacterial PanK. Overall, several new inhibitors and substrates were identified for each type of PanK.


Assuntos
Antibacterianos/farmacologia , Bacillus anthracis/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Bacillus anthracis/enzimologia , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Ligantes , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
6.
Nat Chem ; 10(12): 1234-1245, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30297752

RESUMO

Pyridoxal phosphate (PLP) is an enzyme cofactor required for the chemical transformation of biological amines in many central cellular processes. PLP-dependent enzymes (PLP-DEs) are ubiquitous and evolutionarily diverse, making their classification based on sequence homology challenging. Here we present a chemical proteomic method for reporting on PLP-DEs using functionalized cofactor probes. We synthesized pyridoxal analogues modified at the 2'-position, which are taken up by cells and metabolized in situ. These pyridoxal analogues are phosphorylated to functional cofactor surrogates by cellular pyridoxal kinases and bind to PLP-DEs via an aldimine bond which can be rendered irreversible by NaBH4 reduction. Conjugation to a reporter tag enables the subsequent identification of PLP-DEs using quantitative, label-free mass spectrometry. Using these probes we accessed a significant portion of the Staphylococcus aureus PLP-DE proteome (73%) and annotate uncharacterized proteins as novel PLP-DEs. We also show that this approach can be used to study structural tolerance within PLP-DE active sites and to screen for off-targets of the PLP-DE inhibitor D-cycloserine.


Assuntos
Alanina Racemase/metabolismo , Coenzimas/química , Coenzimas/metabolismo , Dopa Descarboxilase/metabolismo , Glicina Hidroximetiltransferase/metabolismo , Ornitina Descarboxilase/metabolismo , Fosfato de Piridoxal/metabolismo , Transaminases/metabolismo , Alanina Racemase/química , Dopa Descarboxilase/química , Glicina Hidroximetiltransferase/química , Cinética , Modelos Moleculares , Estrutura Molecular , Ornitina Descarboxilase/química , Fosforilação , Fosfato de Piridoxal/química , Transaminases/química
7.
PLoS Pathog ; 14(4): e1006918, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29614109

RESUMO

The malaria-causing blood stage of Plasmodium falciparum requires extracellular pantothenate for proliferation. The parasite converts pantothenate into coenzyme A (CoA) via five enzymes, the first being a pantothenate kinase (PfPanK). Multiple antiplasmodial pantothenate analogues, including pantothenol and CJ-15,801, kill the parasite by targeting CoA biosynthesis/utilisation. Their mechanism of action, however, remains unknown. Here, we show that parasites pressured with pantothenol or CJ-15,801 become resistant to these analogues. Whole-genome sequencing revealed mutations in one of two putative PanK genes (Pfpank1) in each resistant line. These mutations significantly alter PfPanK activity, with two conferring a fitness cost, consistent with Pfpank1 coding for a functional PanK that is essential for normal growth. The mutants exhibit a different sensitivity profile to recently-described, potent, antiplasmodial pantothenate analogues, with one line being hypersensitive. We provide evidence consistent with different pantothenate analogue classes having different mechanisms of action: some inhibit CoA biosynthesis while others inhibit CoA-utilising enzymes.


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos , Malária/tratamento farmacológico , Mutação , Ácido Pantotênico/análogos & derivados , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Plasmodium falciparum/efeitos dos fármacos , Animais , Coenzima A/biossíntese , Eritrócitos/parasitologia , Malária/parasitologia , Ácido Pantotênico/farmacologia , Testes de Sensibilidade Parasitária , Fosforilação , Proteínas de Protozoários/genética
8.
Antimicrob Agents Chemother ; 60(12): 7146-7152, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27645235

RESUMO

The biosynthesis of coenzyme A (CoA) from pantothenate and the utilization of CoA in essential biochemical pathways represent promising antimalarial drug targets. Pantothenamides, amide derivatives of pantothenate, have potential as antimalarials, but a serum enzyme called pantetheinase degrades pantothenamides, rendering them inactive in vivo In this study, we characterize a series of 19 compounds that mimic pantothenamides with a stable triazole group instead of the labile amide. Two of these pantothenamides are active against the intraerythrocytic stage parasite with 50% inhibitory concentrations (IC50s) of ∼50 nM, and three others have submicromolar IC50s. We show that the compounds target CoA biosynthesis and/or utilization. We investigated one of the compounds for its ability to interact with the Plasmodium falciparum pantothenate kinase, the first enzyme involved in the conversion of pantothenate to CoA, and show that the compound inhibits the phosphorylation of [14C]pantothenate by the P. falciparum pantothenate kinase, but the inhibition does not correlate with antiplasmodial activity. Furthermore, the compounds are not toxic to human cells and, importantly, are not degraded by pantetheinase.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Triazóis/química , Amidas/química , Coenzima A/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Concentração Inibidora 50 , Ácido Pantotênico/química , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Plasmodium falciparum/metabolismo , Relação Estrutura-Atividade
9.
Sci Rep ; 6: 33671, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27646017

RESUMO

The eukaryotic Ddi1 family is defined by a conserved retroviral aspartyl protease-like (RVP) domain found in association with a ubiquitin-like (UBL) domain. Ddi1 from Saccharomyces cerevisiae additionally contains a ubiquitin-associated (UBA) domain. The substrate specificity and role of the protease domain in the biological functions of the Ddi family remain unclear. Yeast Ddi1 has been implicated in the regulation of cell cycle progression, DNA-damage repair, and exocytosis. Here, we investigated the multi-domain structure of yeast Ddi1 using X-ray crystallography, nuclear magnetic resonance, and small-angle X-ray scattering. The crystal structure of the RVP domain sheds light on a putative substrate recognition site involving a conserved loop. Isothermal titration calorimetry confirms that both UBL and UBA domains bind ubiquitin, and that Ddi1 binds K48-linked diubiquitin with enhanced affinity. The solution NMR structure of a helical domain that precedes the protease displays tertiary structure similarity to DNA-binding domains from transcription regulators. Our structural studies suggest that the helical domain could serve as a landing platform for substrates in conjunction with attached ubiquitin chains binding to the UBL and UBA domains.


Assuntos
Dano ao DNA , Domínios e Motivos de Interação entre Proteínas , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Família Multigênica , Ligação Proteica , Conformação Proteica , Proteômica/métodos , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato , Ubiquitina/metabolismo
10.
ACS Chem Biol ; 10(3): 834-43, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25486266

RESUMO

Essential cell division protein FtsZ is considered an attractive target in the search for antibacterials with novel mechanisms of action to overcome the resistance problem. FtsZ undergoes GTP-dependent assembly at midcell to form the Z-ring, a dynamic structure that evolves until final constriction of the cell. Therefore, molecules able to inhibit its activity will eventually disrupt bacterial viability. In this work, we report a new series of small molecules able to replace GTP and to specifically inhibit FtsZ, blocking the bacterial division process. These new synthesized inhibitors interact with the GTP-binding site of FtsZ (Kd = 0.4-0.8 µM), display antibacterial activity against Gram-positive pathogenic bacteria, and show selectivity against tubulin. Biphenyl derivative 28 stands out as a potent FtsZ inhibitor (Kd = 0.5 µM) with high antibacterial activity [MIC (MRSA) = 7 µM]. In-depth analysis of the mechanism of action of compounds 22, 28, 33, and 36 has revealed that they act as effective inhibitors of correct FtsZ assembly, blocking bacterial division and thus leading to filamentous undivided cells. These findings provide a compelling rationale for the development of compounds targeting the GTP-binding site as antibacterial agents and open the door to antibiotics with novel mechanisms of action.


Assuntos
Antibacterianos/síntese química , Bacillus subtilis/efeitos dos fármacos , Proteínas de Bactérias/antagonistas & inibidores , Compostos de Bifenilo/síntese química , Proteínas do Citoesqueleto/antagonistas & inibidores , Guanosina Trifosfato/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Naftalenos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Bacillus subtilis/química , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/química , Sítios de Ligação , Compostos de Bifenilo/química , Compostos de Bifenilo/farmacologia , Proteínas do Citoesqueleto/química , Cinética , Staphylococcus aureus Resistente à Meticilina/química , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Modelos Moleculares , Naftalenos/química , Naftalenos/farmacologia , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
11.
Bioorg Med Chem Lett ; 24(15): 3274-7, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24986662

RESUMO

Pantothenamides are N-substituted pantothenate derivatives which are known to exert antimicrobial activity through interference with coenzyme A (CoA) biosynthesis or downstream CoA-utilizing proteins. A previous report has shown that replacement of the ProR methyl group of the benchmark N-pentylpantothenamide with an allyl group (R-anti configuration) yielded one of the most potent antibacterial pantothenamides reported so far (MIC of 3.2 µM for both sensitive and resistant Staphylococcus aureus). We describe herein a synthetic route for accessing the corresponding R-syn diastereomer using a key diastereoselective reduction with Baker's yeast, and report on the scope of this reaction for modified systems. Interestingly, whilst the R-anti diastereomer is the only one to show antibacterial activity, the R-syn isomer proved to be significantly more potent against the malaria parasite (IC50 of 2.4±0.2 µM). Our research underlines the striking influence that stereochemistry has on the biological activity of pantothenamides, and may find utility in the study of various CoA-utilizing systems.


Assuntos
Compostos Alílicos/química , Antibacterianos/farmacologia , Ácido Pantotênico/análogos & derivados , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Ácido Pantotênico/síntese química , Ácido Pantotênico/química , Ácido Pantotênico/farmacologia , Estereoisomerismo , Relação Estrutura-Atividade
12.
Bioorg Med Chem ; 22(12): 3083-90, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24814884

RESUMO

The coenzyme A (CoA) biosynthetic enzymes have been used to produce various CoA analogues, including mechanistic probes of CoA-dependent enzymes such as those involved in fatty acid biosynthesis. These enzymes are also important for the activation of the pantothenamide class of antibacterial agents, and of a recently reported family of antibiotic resistance inhibitors. Herein we report a study on the selectivity of pantothenate kinase, the first and rate limiting step of CoA biosynthesis. A robust synthetic route was developed to allow rapid access to a small library of pantothenate analogs diversified at the ß-alanine moiety, the carboxylate or the geminal dimethyl group. All derivatives were tested as substrates of Escherichia coli pantothenate kinase (EcPanK). Four derivatives, all N-aromatic pantothenamides, proved to be equivalent to the benchmark N-pentylpantothenamide (N5-pan) as substrates of EcPanK, while two others, also with N-aromatic groups, were some of the best substrates reported for this enzyme. This collection of data provides insight for the future design of PanK substrates in the production of useful CoA analogues.


Assuntos
Escherichia coli/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Domínio Catalítico , Coenzima A/metabolismo , Modelos Moleculares , Ácido Pantotênico/análogos & derivados , Ácido Pantotênico/metabolismo , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
13.
J Biol Chem ; 286(37): 32208-19, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21771790

RESUMO

The mitochondrial import receptor Tom70 contains a tetratricopeptide repeat (TPR) clamp domain, which allows the receptor to interact with the molecular chaperones, Hsc70/Hsp70 and Hsp90. Preprotein recognition by Tom70, a critical step to initiate import, is dependent on these cytosolic chaperones. Preproteins are subsequently released from the receptor for translocation across the outer membrane, yet the mechanism of this step is unknown. Here, we report that Tom20 interacts with the TPR clamp domain of Tom70 via a conserved C-terminal DDVE motif. This interaction was observed by cross-linking endogenous proteins on the outer membrane of mitochondria from HeLa cells and in co-precipitation and NMR titrations with purified proteins. Upon mutation of the TPR clamp domain or deletion of the DDVE motif, the interaction was impaired. In co-precipitation experiments, the Tom20-Tom70 interaction was inhibited by C-terminal peptides from Tom20, as well as from Hsc70 and Hsp90. The Hsp90-Tom70 interaction was measured with surface plasmon resonance, and the same peptides inhibited the interaction. Thus, Tom20 competes with the chaperones for Tom70 binding. Interestingly, antibody blocking of Tom20 did not increase the efficiency of Tom70-dependent preprotein import; instead, it impaired the Tom70 import pathway in addition to the Tom20 pathway. The functional interaction between Tom20 and Tom70 may be required at a later step of the Tom70-mediated import, after chaperone docking. We suggest a novel model in which Tom20 binds Tom70 to facilitate preprotein release from the chaperones by competition.


Assuntos
Proteínas de Choque Térmico/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/metabolismo , Precursores de Proteínas/metabolismo , Receptores de Superfície Celular/metabolismo , Motivos de Aminoácidos , Células HeLa , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Humanos , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/genética , Membranas Mitocondriais/química , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Mutação , Ressonância Magnética Nuclear Biomolecular , Peptídeos/farmacologia , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Precursores de Proteínas/química , Precursores de Proteínas/genética , Estrutura Terciária de Proteína , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...