Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(7): 114374, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38900641

RESUMO

Morphological studies of skeletal muscle tissue provide insights into the architecture of muscle fibers, the surrounding cells, and the extracellular matrix (ECM). However, a spatial proteomics analysis of the skeletal muscle including the muscle-tendon transition zone is lacking. Here, we prepare cryotome muscle sections of the mouse soleus muscle and measure each slice using short liquid chromatography-mass spectrometry (LC-MS) gradients. We generate 3,000 high-resolution protein profiles that serve as the basis for a network analysis to reveal the complex architecture of the muscle-tendon junction. Among the protein profiles that increase from muscle to tendon, we find proteins related to neuronal activity, fatty acid biosynthesis, and the renin-angiotensin system (RAS). Blocking the RAS in cultured mouse tenocytes using losartan reduces the ECM synthesis. Overall, our analysis of thin cryotome sections provides a spatial proteome of skeletal muscle and reveals that the RAS acts as an additional regulator of the matrix within muscle-tendon junctions.


Assuntos
Músculo Esquelético , Proteômica , Tendões , Animais , Proteômica/métodos , Músculo Esquelético/metabolismo , Tendões/metabolismo , Camundongos , Matriz Extracelular/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Sistema Renina-Angiotensina/fisiologia , Adaptação Fisiológica , Proteoma/metabolismo , Losartan/farmacologia
2.
J Cell Sci ; 136(8)2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36924352

RESUMO

The myotendinous junction (MTJ) is a specialized domain of the multinucleated myofibre that is faced with the challenge of maintaining robust cell-matrix contact with the tendon under high mechanical stress and strain. Here, we profiled 24,124 nuclei in semitendinosus muscle-tendon samples from three healthy males by using single-nucleus RNA sequencing (snRNA-seq), alongside spatial transcriptomics, to gain insight into the genes characterizing this specialization in humans. We identified a cluster of MTJ myonuclei represented by 47 enriched transcripts, of which the presence of ABI3BP, ABLIM1, ADAMTSL1, BICD1, CPM, FHOD3, FRAS1 and FREM2 was confirmed at the MTJ at the protein level in immunofluorescence assays. Four distinct subclusters of MTJ myonuclei were apparent, comprising two COL22A1-expressing subclusters and two subclusters lacking COL22A1 expression but with differing fibre type profiles characterized by expression of either MYH7 or MYH1 and/or MYH2. Our findings reveal distinct myonuclei profiles of the human MTJ, which represents a weak link in the musculoskeletal system that is selectively affected in pathological conditions ranging from muscle strains to muscular dystrophies.


Assuntos
Junção Miotendínea , Tendões , Masculino , Humanos , Tendões/fisiologia , Núcleo Celular/metabolismo , Músculo Esquelético/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas com Domínio LIM/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Forminas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA