Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 112022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36373655

RESUMO

TMEM87s are eukaryotic transmembrane proteins with two members (TMEM87A and TMEM87B) in humans. TMEM87s have proposed roles in protein transport to and from the Golgi, as mechanosensitive ion channels, and in developmental signaling. TMEM87 disruption has been implicated in cancers and developmental disorders. To better understand TMEM87 structure and function, we determined a cryo-EM structure of human TMEM87A in lipid nanodiscs. TMEM87A consists of a Golgi-dynamics (GOLD) domain atop a membrane-spanning seven-transmembrane helix domain with a large cavity open to solution and the membrane outer leaflet. Structural and functional analyses suggest TMEM87A may not function as an ion channel or G-protein coupled receptor. We find TMEM87A shares its characteristic domain arrangement with seven other proteins in humans; three that had been identified as evolutionary related (TMEM87B, GPR107, and GPR108) and four previously unrecognized homologs (GPR180, TMEM145, TMEM181, and WLS). Among these structurally related GOLD domain seven-transmembrane helix (GOST) proteins, WLS is best characterized as a membrane trafficking and secretion chaperone for lipidated Wnt signaling proteins. We find key structural determinants for WLS function are conserved in TMEM87A. We propose TMEM87A and structurally homologous GOST proteins could serve a common role in trafficking membrane-associated cargo.


Assuntos
Complexo de Golgi , Proteínas de Membrana , Humanos , Complexo de Golgi/metabolismo , Transporte Proteico , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Família
2.
Nat Commun ; 12(1): 6913, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34824283

RESUMO

Tweety homologs (TTYHs) comprise a conserved family of transmembrane proteins found in eukaryotes with three members (TTYH1-3) in vertebrates. They are widely expressed in mammals including at high levels in the nervous system and have been implicated in cancers and other diseases including epilepsy, chronic pain, and viral infections. TTYHs have been reported to form Ca2+- and cell volume-regulated anion channels structurally distinct from any characterized protein family with potential roles in cell adhesion, migration, and developmental signaling. To provide insight into TTYH family structure and function, we determined cryo-EM structures of Mus musculus TTYH2 and TTYH3 in lipid nanodiscs. TTYH2 and TTYH3 adopt a previously unobserved fold which includes an extended extracellular domain with a partially solvent exposed pocket that may be an interaction site for hydrophobic molecules. In the presence of Ca2+, TTYH2 and TTYH3 form homomeric cis-dimers bridged by extracellularly coordinated Ca2+. Strikingly, in the absence of Ca2+, TTYH2 forms trans-dimers that span opposing membranes across a ~130 Å intermembrane space as well as a monomeric state. All TTYH structures lack ion conducting pathways and we do not observe TTYH2-dependent channel activity in cells. We conclude TTYHs are not pore forming subunits of anion channels and their function may involve Ca2+-dependent changes in quaternary structure, interactions with hydrophobic molecules near the extracellular membrane surface, and/or association with additional protein partners.


Assuntos
Canais de Cloreto/química , Canais de Cloreto/metabolismo , Dimerização , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Animais , Anoctaminas/química , Transporte Biológico , Cálcio/metabolismo , Adesão Celular , Tamanho Celular , Canais de Cloreto/genética , Dor Crônica , Microscopia Crioeletrônica , Eucariotos , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/genética , Camundongos , Receptor EphB2 , Transdução de Sinais
4.
Nat Struct Mol Biol ; 28(7): 573-582, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34158638

RESUMO

SARS-CoV-2 ORF3a is a putative viral ion channel implicated in autophagy inhibition, inflammasome activation and apoptosis. 3a protein and anti-3a antibodies are found in infected patient tissues and plasma. Deletion of 3a in SARS-CoV-1 reduces viral titer and morbidity in mice, suggesting it could be an effective target for vaccines or therapeutics. Here, we present structures of SARS-CoV-2 3a determined by cryo-EM to 2.1-Å resolution. 3a adopts a new fold with a polar cavity that opens to the cytosol and membrane through separate water- and lipid-filled openings. Hydrophilic grooves along outer helices could form ion-conduction paths. Using electrophysiology and fluorescent ion imaging of 3a-reconstituted liposomes, we observe Ca2+-permeable, nonselective cation channel activity, identify mutations that alter ion permeability and discover polycationic inhibitors of 3a activity. 3a-like proteins are found across coronavirus lineages that infect bats and humans, suggesting that 3a-targeted approaches could treat COVID-19 and other coronavirus diseases.


Assuntos
Microscopia Crioeletrônica , Nanoestruturas , SARS-CoV-2 , Proteínas Viroporinas/química , Proteínas Viroporinas/ultraestrutura , Animais , Cálcio/metabolismo , Quirópteros/virologia , Coronaviridae , Eletrofisiologia , Fluorescência , Humanos , Transporte de Íons , Lipossomos , Modelos Moleculares , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Fases de Leitura Aberta , Imagem Óptica , Reprodutibilidade dos Testes , SARS-CoV-2/química , SARS-CoV-2/ultraestrutura , Homologia de Sequência , Proteínas Virais/química , Proteínas Virais/ultraestrutura , Proteínas Viroporinas/antagonistas & inibidores
5.
Nat Commun ; 12(1): 2571, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33958590

RESUMO

CRISPR-Cas systems provide adaptive immunity in bacteria and archaea, beginning with integration of foreign sequences into the host CRISPR genomic locus and followed by transcription and maturation of CRISPR RNAs (crRNAs). In some CRISPR systems, a reverse transcriptase (RT) fusion to the Cas1 integrase and Cas6 maturase creates a single protein that enables concerted sequence integration and crRNA production. To elucidate how the RT-integrase organizes distinct enzymatic activities, we present the cryo-EM structure of a Cas6-RT-Cas1-Cas2 CRISPR integrase complex. The structure reveals a heterohexamer in which the RT directly contacts the integrase and maturase domains, suggesting functional coordination between all three active sites. Together with biochemical experiments, our data support a model of sequential enzymatic activities that enable CRISPR sequence acquisition from RNA and DNA substrates. These findings highlight an expanded capacity of some CRISPR systems to acquire diverse sequences that direct CRISPR-mediated interference.


Assuntos
Proteínas Associadas a CRISPR/química , Sistemas CRISPR-Cas , Endonucleases/química , Integrases/química , Piscirickettsiaceae/química , DNA Polimerase Dirigida por RNA/química , Proteínas Associadas a CRISPR/metabolismo , Domínio Catalítico , Microscopia Crioeletrônica , Escherichia coli/metabolismo , Piscirickettsiaceae/enzimologia , Piscirickettsiaceae/metabolismo , Proteínas Recombinantes
6.
bioRxiv ; 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-32587976

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus that causes the coronavirus disease 2019 (COVID-19). SARS-CoV-2 encodes three putative ion channels: E, 8a, and 3a1,2. 3a is expressed in SARS patient tissue and anti-3a antibodies are observed in patient plasma3-6. 3a has been implicated in viral release7, inhibition of autophagy8, inflammasome activation9, and cell death10,11 and its deletion reduces viral titer and morbidity in mice1, raising the possibility that 3a could be an effective vaccine or therapeutic target3,12. Here, we present the first cryo-EM structures of SARS-CoV-2 3a to 2.1 Å resolution and demonstrate 3a forms an ion channel in reconstituted liposomes. The structures in lipid nanodiscs reveal 3a dimers and tetramers adopt a novel fold with a large polar cavity that spans halfway across the membrane and is accessible to the cytosol and the surrounding bilayer through separate water- and lipid-filled openings. Electrophysiology and fluorescent ion imaging experiments show 3a forms Ca2+-permeable non-selective cation channels. We identify point mutations that alter ion permeability and discover polycationic inhibitors of 3a channel activity. We find 3a-like proteins in multiple Alphacoronavirus and Betacoronavirus lineages that infect bats and humans. These data show 3a forms a functional ion channel that may promote COVID-19 pathogenesis and suggest targeting 3a could broadly treat coronavirus diseases.

7.
Curr Biol ; 25(14): 1842-51, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-26166783

RESUMO

Chromosome biorientation, where sister kinetochores attach to microtubules (MTs) from opposing spindle poles, is the configuration that best ensures equal partitioning of the genome during cell division. Erroneous kinetochore-MT attachments are commonplace but are often corrected prior to anaphase. Error correction, thought to be mediated primarily by the centromere-enriched Aurora B kinase (ABK), typically occurs near spindle poles; however, the relevance of this locale is unclear. Furthermore, polar ejection forces (PEFs), highest near poles, can stabilize improper attachments by pushing mal-oriented chromosome arms away from spindle poles. Hence, there is a conundrum: erroneous kinetochore-MT attachments are weakened where PEFs are most likely to strengthen them. Here, we report that Aurora A kinase (AAK) opposes the stabilizing effect of PEFs. AAK activity contributes to phosphorylation of kinetochore substrates near poles and its inhibition results in chromosome misalignment and an increased incidence of erroneous kinetochore-MT attachments. Furthermore, AAK directly phosphorylates a site in the N-terminal tail of Ndc80/Hec1 that has been implicated in reducing the affinity of the Ndc80 complex for MTs when phosphorylated. We propose that an AAK activity gradient contributes to correcting mal-oriented kinetochore-MT attachments in the vicinity of spindle poles.


Assuntos
Aurora Quinase A/genética , Polaridade Celular , Posicionamento Cromossômico , Cromossomos de Insetos/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Animais , Aurora Quinase A/metabolismo , Células Cultivadas , Cromossomos de Insetos/ultraestrutura , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/ultraestrutura , Regulação da Expressão Gênica , Cinetocoros/metabolismo , Cinetocoros/ultraestrutura , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA