Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO Mol Med ; 4(4): 283-97, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22323443

RESUMO

The large difference in phenotypes among tumour populations may stem from the stochastic origin of tumours from distinct cells - tumour cells are assumed to retain the phenotypes of the cells from which they derive. Yet, functional studies addressing the cellular origin of leukaemia are lacking. Here we show that the cells of origin of both, BCR/ABL-induced chronic myeloid (CML) and B-cell acute lymphoid leukaemia (B-ALL), resemble long-term haematopoietic stem cells (LT-HSCs). During disease-maintenance, CML LT-HSCs persist to function as cancer stem cells (CSCs) that maintain leukaemia and require signalling by the transcription factor STAT5. In contrast, B-ALL LT-HSCs differentiate into CSCs that correspond to pro-B cells. This transition step requires a transient IL-7 signal and is lost in IL-7Rα-deficient cells. Thus, in BCR/ABLp185(+) B-ALL and BCR/ABLp210(+) CML, the final phenotype of the tumour as well as the abundance of CSCs is dictated by diverging differentiation fates of their common cells of origin.


Assuntos
Transformação Celular Neoplásica/patologia , Leucemia Basofílica Aguda/patologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Células-Tronco Neoplásicas/patologia , Linfócitos B/citologia , Linfócitos B/metabolismo , Linfócitos B/patologia , Transformação Celular Neoplásica/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Humanos , Leucemia Basofílica Aguda/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Células-Tronco Neoplásicas/metabolismo , Fator de Transcrição STAT5/metabolismo
2.
Blood ; 118(17): 4635-45, 2011 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-21878673

RESUMO

In Eµ-myc transgenic animals lymphoma formation requires additional genetic alterations, which frequently comprise loss of p53 or overexpression of BCL-2. We describe that the nature of the "second hit" affects the ability of the immune system to contain lymphoma development. Tumors with disrupted p53 signaling killed the host more rapidly than BCL-2 overexpressing ones. Relaxing immunologic control, using Tyk2(-/-) mice or by Ab-mediated depletion of CD8(+) T or natural killer (NK) cells accelerated formation of BCL-2-overexpressing lymphomas but not of those lacking p53. Most strikingly, enforced expression of BCL-2 prolonged disease latency in the absence of p53, whereas blocking p53 function in BCL-2-overexpressing tumors failed to accelerate disease. This shows that blocking apoptosis in p53-deficient cells by enforcing BCL-2 expression can mitigate disease progression increasing the "immunologic visibility." In vitro cytotoxicity assays confirmed that high expression of BCL-2 protein facilitates NK and T cell-mediated killing. Moreover, we found that high BCL-2 expression is accompanied by significantly increased levels of the NKG2D ligand MULT1, which may account for the enhanced killing. Our findings provide first evidence that the nature of the second hit affects tumor immunosurveillance in c-MYC-driven lymphomas and define a potential shortcoming of antitumor therapies targeting BCL-2.


Assuntos
Epistasia Genética/imunologia , Genes myc/fisiologia , Vigilância Imunológica/genética , Linfoma/genética , Mutação/fisiologia , Animais , Transformação Celular Neoplásica/genética , Células Cultivadas , Progressão da Doença , Epistasia Genética/fisiologia , Genes bcl-2/fisiologia , Genes p53/fisiologia , Linfoma/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , TYK2 Quinase/genética , Evasão Tumoral/genética
3.
Front Biosci (Landmark Ed) ; 16(8): 3043-56, 2011 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-21622220

RESUMO

Persistent tyrosine phosphorylation of Stat3 and Stat5 is associated with oncogenic activity. Phosphorylation of the conserved tyrosine residue (pTyr) was long believed to be the only essential prerequisite to promote activation and nuclear translocation of Stat proteins. It has become evident, however, that post-translational protein modifications like serine phosphorylation, acetylation, glycosylation as well as protein splicing and processing constitute further regulatory mechanisms to modulate Stat transcriptional activity and to provide an additional layer of specificity to Jak-Stat signal transduction. Significantly, most vertebrate Stat proteins contain one conserved serine phosphorylation site within their transactivation domains. This phosphorylation motif is located within a P(M)SP sequence. Stat transcription factor activity is negatively influenced by mutation of the serine to alanine. Moreover, it was shown for both Stat3 and Stat5 that their capacity to transform cells was diminished. This review addresses recent advances in understanding the regulation and the biochemical and biological consequences of Stat serine phosphorylation. In particular, we discuss their role in persistently activated Stat proteins for cancer research.


Assuntos
Transformação Celular Neoplásica/metabolismo , Fator de Transcrição STAT5/metabolismo , Sequência de Aminoácidos , Animais , Transformação Celular Neoplásica/genética , Sequência Conservada , Neoplasias Hematológicas/etiologia , Humanos , Dados de Sequência Molecular , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Fator de Transcrição STAT5/química , Fator de Transcrição STAT5/genética , Homologia de Sequência de Aminoácidos , Serina/química , Transdução de Sinais
4.
Blood ; 117(15): 4065-75, 2011 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-21300982

RESUMO

The transcription factor c-JUN and its upstream kinase JNK1 have been implicated in BCR-ABL-induced leukemogenesis. JNK1 has been shown to regulate BCL2 expression, thereby altering leukemogenesis, but the impact of c-JUN remained unclear. In this study, we show that JNK1 and c-JUN promote leukemogenesis via separate pathways, because lack of c-JUN impairs proliferation of p185(BCR-ABL)-transformed cells without affecting their viability. The decreased proliferation of c-Jun(Δ/Δ) cells is associated with the loss of cyclin-dependent kinase 6 (CDK6) expression. In c-Jun(Δ/Δ) cells, CDK6 expression becomes down-regulated upon BCR-ABL-induced transformation, which correlates with CpG island methylation within the 5' region of Cdk6. We verified the impact of Cdk6 deficiency using Cdk6(-/-) mice that developed BCR-ABL-induced B-lymphoid leukemia with significantly increased latency and an attenuated disease phenotype. In addition, we show that reexpression of CDK6 in BCR-ABL-transformed c-Jun(Δ/Δ) cells reconstitutes proliferation and tumor formation in Nu/Nu mice. In summary, our study reveals a novel function for the activating protein 1 (AP-1) transcription factor c-JUN in leukemogenesis by antagonizing promoter methylation. Moreover, we identify CDK6 as relevant and critical target of AP-1-regulated DNA methylation on BCR-ABL-induced transformation, thereby accelerating leukemogenesis.


Assuntos
Quinase 6 Dependente de Ciclina/genética , Metilação de DNA/fisiologia , Proteínas de Fusão bcr-abl/genética , Leucemia Linfoide , Proteínas Proto-Oncogênicas c-jun/metabolismo , Regiões 5' não Traduzidas/fisiologia , Animais , Divisão Celular/fisiologia , Transformação Celular Neoplásica/genética , Células Cultivadas , Regulação Leucêmica da Expressão Gênica/fisiologia , Leucemia Linfoide/etiologia , Leucemia Linfoide/genética , Leucemia Linfoide/metabolismo , Fígado/citologia , Camundongos , Camundongos Mutantes , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Transdução de Sinais/fisiologia
5.
Blood ; 116(14): 2513-21, 2010 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-20576813

RESUMO

Evidence suggests that tumor microenvironment is critically involved in supporting survival of chronic lymphocytic leukemia (CLL) cells. However, the molecular mechanisms of this effect and the clinical significance are not fully understood. We applied a microenvironment model to explore the interaction between CLL cells and stromal cells and to elucidate the role of phosphatidylinositol 3 kinase (PI3-K)/Akt/phosphatase and tensin homolog detected on chromosome 10 (PTEN) cascade in this process and its in vivo relevance. Primary human stromal cells from bone marrow, lymph nodes, and spleen significantly inhibited spontaneous apoptosis of CLL cells. Pan-PI3-K inhibitors (LY294002, wortmannin, PI-103), isotype-specific inhibitors of p110α, p110ß, p110γ, and small interfering RNA against PI3-K and Akt1 counteracted the antiapoptotic effect of the stromal cells. Induction of apoptosis was associated with a decrease in phosphatidylinositol-3,4,5-triphosphate, PI3-K-p85, and dephosphorylation of phosphatidylinositol-dependent kinase-1 (PDK-1), Akt1, and PTEN. Freshly isolated peripheral blood mononuclear cells from patients with CLL (n = 44) showed significantly higher levels of phosphorylated Akt1, PDK-1, PTEN, and CK2 than healthy persons (n = 8). CK2 inhibitors (4,5,6,7-tetrabromo-1H-benzotriazole, apigenin, and 5,6-dichloro-1-ß-D-ribofuranosylbenzimidazol) decreased phosphorylation of PTEN and Akt, induced apoptosis in CLL cells, and enhanced the response to fludarabine. In conclusion, bone marrow microenvironment modulates the PI3-K/Akt/PTEN cascade and prevents apoptosis of CLL cells. Combined inhibition of PI3-K/Akt and recovery of PTEN activity may represent a novel therapeutic concept for CLL.


Assuntos
Apoptose , Células da Medula Óssea/metabolismo , Leucemia Linfocítica Crônica de Células B/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células da Medula Óssea/patologia , Caseína Quinase II/metabolismo , Células Cultivadas , Humanos , Leucemia Linfocítica Crônica de Células B/patologia , Células Estromais/metabolismo , Células Estromais/patologia
6.
Blood ; 116(9): 1548-58, 2010 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-20508164

RESUMO

Stat5 transcription factors are essential gene regulators promoting proliferation, survival, and differentiation of all hematopoietic cell types. Mutations or fusions of oncogenic tyrosine kinases often result in constitutive Stat5 activation. We have modeled persistent Stat5 activity by using an oncogenic Stat5a variant (cS5). To analyze the hitherto unrecognized role of Stat5 serine phosphorylation in this context, we have generated cS5 constructs with mutated C-terminal serines 725 and 779, either alone or in combination. Genetic complementation assays in primary Stat5(null/null) mast cells and Stat5(DeltaN) T cells demonstrated reconstitution of proliferation with these mutants. Similarly, an in vivo reconstitution experiment of transduced Stat5(null/null) fetal liver cells transplanted into irradiated wild-type recipients revealed that these mutants exhibit biologic activity in lineage differentiation. By contrast, the leukemogenic potential of cS5 in bone marrow transplants decreased dramatically in cS5 single-serine mutants or was completely absent upon loss of both serine phosphorylation sites. Our data suggest that Stat5a serine phosphorylation is a prerequisite for cS5-mediated leukemogenesis. Hence, interference with Stat5a serine phosphorylation might provide a new therapeutic option for leukemia and myeloid dysplasias without affecting major functions of Stat5 in normal hematopoiesis.


Assuntos
Transformação Celular Neoplásica , Hematopoese/fisiologia , Leucemia/patologia , Fator de Transcrição STAT5/metabolismo , Serina/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Adulto , Idoso , Animais , Western Blotting , Transplante de Medula Óssea , Linhagem da Célula , Proliferação de Células , Células Cultivadas , Feminino , Feto , Citometria de Fluxo , Humanos , Técnicas Imunoenzimáticas , Leucemia/genética , Leucemia/metabolismo , Transplante de Fígado , Masculino , Mastócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Fosforilação , Células Precursoras de Linfócitos B/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT5/genética , Serina/genética , Linfócitos T/metabolismo , Proteínas Supressoras de Tumor/genética
7.
EMBO Mol Med ; 2(3): 98-110, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20201032

RESUMO

Tumourigenesis caused by the Bcr/Abl oncoprotein is a multi-step process proceeding from initial to tumour-maintaining events and finally results in a complex tumour-supporting network. A key to successful cancer therapy is the identification of critical functional nodes in an oncogenic network required for disease maintenance. So far, the transcription factors Stat3 and Stat5a/b have been implicated in bcr/abl-induced initial transformation. However, to qualify as a potential drug target, a signalling pathway must be required for the maintenance of the leukaemic state. Data on the roles of Stat3 or Stat5a/b in leukaemia maintenance are elusive. Here, we show that both, Stat3 and Stat5 are necessary for initial transformation. However, Stat5- but not Stat3-deletion induces G(0)/G(1) cell cycle arrest and apoptosis of imatinib-sensitive and imatinib-resistant stable leukaemic cells in vitro. Accordingly, Stat5-abrogation led to effective elimination of myeloid and lymphoid leukaemia maintenance in vivo. Hence, we identified Stat5 as a vulnerable point in the oncogenic network downstream of Bcr/Abl representing a case of non-oncogene addiction (NOA).


Assuntos
Leucemia/fisiopatologia , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT5/metabolismo , Animais , Apoptose , Ciclo Celular , Deleção de Genes , Genes abl , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas c-bcr/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT5/genética
8.
Front Biosci (Landmark Ed) ; 14(8): 2944-58, 2009 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-19273247

RESUMO

Stat transcription factors have been implicated in tumorigenesis in mice and men. Stat3 and Stat5 are considered powerful proto-oncogenes, whereas Stat1 has been demonstrated to suppress tumor formation. We demonstrate here for the first time that a constitutive active version of Stat3alpha (Stat3alphaC) may also suppress transformation. Mouse embryonic fibroblasts (MEFs) deficient for p53 can be transformed with either c-myc or with rasV12 alone. Interestingly, transformation by c-myc is efficiently suppressed by co-expression of Stat3alphaC, but Stat3alphaC does not interfere with transformation by the rasV12-oncogene. In contrast, transplantation of bone marrow cells expressing Stat3alphaC induces the formation of a highly aggressive T cell leukemia in mice. The leukemic cells invaded multiple organs including lung, heart, salivary glands, liver and kidney. Interestingly, transplanted mice developed a similar leukemia when the bone marrow cells were transduced with Stat3beta, which is also constitutively active when expressed at significant levels. Our experiments demonstrate that Stat3 has both - tumor suppressing and tumor promoting properties.


Assuntos
Genes Supressores de Tumor , Proto-Oncogenes , Fator de Transcrição STAT3/fisiologia , Animais , Western Blotting , Transplante de Medula Óssea , Linhagem Celular , Proliferação de Células , Ensaio de Desvio de Mobilidade Eletroforética , Citometria de Fluxo , Humanos , Leucemia/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proto-Oncogene Mas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT3/genética
9.
Front Biosci ; 13: 6237-54, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18508657

RESUMO

Stat5 proteins modulate gene transcription upon cytokine- and growth factor action. Stat5a and Stat5b proteins alone are weak activators of transcription. They can modify chromatin organization through oligomerization and they act predominantly in co-operation and interaction with other proteins. The conservative view of exclusively nuclear functions of Stat5 was challenged by the observation of additional Stat5 effects in the cytoplasm, resulting in activation of the PI3K-Akt pathway. We summarize biological consequences of mutations in conserved domains of Stat5 or of deletions in the N- or C-terminal domains with impact on target gene transcription. Formation of higher-order oligomers is dramatically changed upon amino- or carboxyterminal deletions in Stat5 proteins. Mutations in or deletion of the Stat5 N-terminus leads to diminished leukemogenic potential of oncogenic Stat5, probably due to the inability to form Stat5 tetramers. The Stat5 N-terminal domain prevents persistent activation and can act as a DNA-docking platform for the glucocorticoid receptor (GR). The corresponding protocols should facilitate follow-up studies on Stat5 proteins and their contribution to normal physiological versus pathological processes through differential chromatin binding.


Assuntos
Cromatina/fisiologia , Fator de Transcrição STAT5/fisiologia , Animais , Doenças Autoimunes/fisiopatologia , DNA/genética , DNA/metabolismo , Humanos , Inflamação/fisiopatologia , Camundongos , Camundongos Knockout , Modelos Animais , Transtornos Mieloproliferativos/fisiopatologia , Neoplasias/fisiopatologia , Isoformas de Proteínas/fisiologia , Fator de Transcrição STAT5/deficiência , Fator de Transcrição STAT5/genética
10.
J Immunol ; 180(8): 5466-76, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18390729

RESUMO

Oncogenic tyrosine kinases (TK) usually convert growth factor-dependent cells to factor independence with autonomous proliferation. However, TK-driven neoplasms often are indolent and characterized by cell differentiation rather than proliferation. A prototype of an indolent TK-driven neoplasm is indolent systemic mastocytosis. We found that the D816V-mutated variant of KIT, a TK detectable in most patients with systemic mastocytosis, induces cluster formation and expression of several mast cell differentiation and adhesion Ags, including microphthalmia transcription factor, IL-4 receptor, histamine, CD63, and ICAM-1 in IL-3-dependent BaF3 cells. By contrast, wild-type KIT did not induce cluster formation or mast cell differentiation Ags. Additionally, KIT D816V, but not wild-type KIT, induced STAT5 activation in BaF3 cells. However, despite these intriguing effects, KIT D816V did not convert BaF3 cells to factor-independent proliferation. Correspondingly, BaF3 cells with conditional expression of KIT D816V did not form tumors in nude mice. Together, the biologic effects of KIT D816V in BaF3 cells match strikingly with the clinical course of indolent systemic mastocytosis and with our recently established transgenic mouse model, in which KIT D816V induces indolent mast cell accumulations but usually does not induce a malignant mast cell disease. Based on all these results, it is hypothesized that KIT D816V as a single hit may be sufficient to cause indolent systemic mastocytosis, whereas additional defects may be required to induce aggressive mast cell disorders.


Assuntos
Antígenos de Diferenciação/metabolismo , Histamina/biossíntese , Mastócitos/fisiologia , Mastocitose Sistêmica/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Perfilação da Expressão Gênica , Humanos , Mastócitos/citologia , Mastócitos/imunologia , Mastocitose Sistêmica/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mutação , Proteínas Proto-Oncogênicas c-kit/genética , Transdução de Sinais
11.
Blood ; 107(12): 4898-906, 2006 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-16493008

RESUMO

The Stat5 transcription factors Stat5a and Stat5b have been implicated in lymphoid development and transformation. Most studies have employed Stat5a/b-deficient mice where gene targeting disrupted the first protein-coding exon, resulting in the expression of N-terminally truncated forms of Stat5a/b (Stat5a/b(DeltaN/DeltaN) mice). We have now reanalyzed lymphoid development in Stat5a/b(null/null) mice having a complete deletion of the Stat5a/b gene locus. The few surviving Stat5a/b(null/null) mice lacked CD8(+) T lymphocytes. A massive reduction of CD8(+) T cells was also found in Stat5a/b(fl/fl) lck-cre transgenic animals. While gammadelta T-cell receptor-positive (gammadeltaTCR(+)) cells were expressed at normal levels in Stat5a/b(DeltaN/DeltaN) mice, they were completely absent in Stat5a/b(null/null) animals. Moreover, B-cell maturation was abrogated at the pre-pro-B-cell stage in Stat5a/b(null/null) mice, whereas Stat5a/b(DeltaN/DeltaN) B-lymphoid cells developed to the early pro-B-cell stage. In vitro assays using fetal liver-cell cultures confirmed this observation. Most strikingly, Stat5a/b(null/null) cells were resistant to transformation and leukemia development induced by Abelson oncogenes, whereas Stat5a/b(DeltaN/DeltaN)-derived cells readily transformed. These findings show distinct lymphoid defects for Stat5a/b(DeltaN/DeltaN) and Stat5a/b(null/null) mice and define a novel functional role for the N-termini of Stat5a/b in B-lymphoid transformation.


Assuntos
Linfócitos B/metabolismo , Diferenciação Celular , Transformação Celular Neoplásica/metabolismo , Genes abl , Fator de Transcrição STAT5/metabolismo , Animais , Linfócitos B/patologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Diferenciação Celular/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Feto/metabolismo , Feto/patologia , Deleção de Genes , Genes abl/genética , Leucemia/genética , Leucemia/metabolismo , Leucemia/patologia , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Knockout , Locos de Características Quantitativas/genética , Receptores de Antígenos de Linfócitos T gama-delta/genética , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Fator de Transcrição STAT5/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...