Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Clin Genet ; 105(6): 661-665, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38361102

RESUMO

Familial exudative vitreoretinopathy (FEVR) is linked to disruption of the Norrin/Frizzled-4 signaling pathway, which plays an important role in retinal angiogenesis. Severe or complete knock-down of proteins in the pathway also causes syndromic forms of the condition. Both heterozygous and biallelic pathogenic variants in the FZD4 gene, encoding the pathway's key protein frizzled-4, are known to cause FEVR. However, it is not clear what effect different FZD4 variants have, and whether extraocular features should be expected in those with biallelic pathogenic FZD4 variants. Biallelic FZD4 variants were found in a young boy with isolated, severe FEVR. His parents were heterozygous for one variant each and reported normal vision. In-vitro studies of the two variants, demonstrated that it was the combination of the two which led to severe inhibition of the Norrin/Frizzled-4 pathway. Our observations demonstrate that biallelic FZD4-variants are associated with a severe form of FEVR, which does not necessarily include extraocular features. In addition, variants causing severe FEVR in combination, may have no or minimal effect in heterozygous parents as non-penetrance is also a major feature in dominant FZD4-FEVR disease. This underscores the importance of genetic testing of individuals and families with FEVR.


Assuntos
Alelos , Vitreorretinopatias Exsudativas Familiares , Receptores Frizzled , Humanos , Masculino , Oftalmopatias Hereditárias/genética , Oftalmopatias Hereditárias/patologia , Vitreorretinopatias Exsudativas Familiares/genética , Receptores Frizzled/genética , Predisposição Genética para Doença , Heterozigoto , Mutação/genética , Linhagem , Fenótipo , Doenças Retinianas/genética , Doenças Retinianas/patologia , Lactente , Pré-Escolar
2.
Neuromuscul Disord ; 32(1): 75-79, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34922802

RESUMO

We present a retrospective 21-year follow-up of two sisters with X-linked biallelic CAG expansions in the androgen receptor (AR) gene causing Kennedy disease. Two sisters inherited CAG expansions from their mother who was a carrier and their father who had Kennedy disease. Genetic testing revealed alleles comprising 43/45, and 43/43 CAG repeats in the younger and older sister, respectively. They were referred to a neurologist for further evaluation. Both reported similar symptoms with chronic backache, pain and cramps in upper- and lower extremities, and fasciculations in their faces and extremities. Neurological examination demonstrated postural hand tremor in both and EMG revealed chronic neurogenic changes. Reevaluation of the patients at ages 74 and 83 showed slight progression of clinical manifestations. As opposed to male patients, these two females showed minimal disease progression and have maintained normal level of function into old age.


Assuntos
Atrofia Bulboespinal Ligada ao X/genética , Receptores Androgênicos/genética , Idoso , Alelos , Progressão da Doença , Feminino , Seguimentos , Humanos , Pessoa de Meia-Idade , Estudos Retrospectivos , Irmãos , Repetições de Trinucleotídeos
3.
Front Genet ; 10: 249, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30984240

RESUMO

Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder caused by a CGG-repeat expansion in the 5' UTR of the FMR1 gene on the X-chromosome. Both elevated levels of the expanded FMR1 mRNA and aberrant expression of a polyglycine protein (FMRpolyG) from the CGG-repeat region are hypothesized to trigger the pathogenesis of FXTAS. While increased expression of FMRpolyG leads to higher toxicity in FXTAS models, the pathogenic effect of this protein has only been studied in the presence of CGG-containing mRNA. Here we present a model that allows measurement of the effect of FMRpolyG-expression without co-expression of the corresponding CGG mRNA hairpin. This allows direct comparison of the effect of the FMRpolyG protein per se, vs. that of the FMRpolyG protein together with the CGG mRNA hairpin. Our results show that expression of the FMRpolyG, in the absence of any CGG mRNA, is sufficient to cause reduced cell viability, lamin ring disruption and aggregate formation. Furthermore, we found FMRpolyG to be a long-lived protein degraded primarily by the ubiquitin-proteasome-system. Together, our data indicate that accumulation of FMRpolyG protein per se may play a major role in the development of FXTAS.

4.
Tidsskr Nor Laegeforen ; 137(20)2017 10 31.
Artigo em Inglês, Norueguês | MEDLINE | ID: mdl-29094559

RESUMO

Fragile X-associated tremor/ataxia syndrome (FXTAS) is a hereditary neurodegenerative disorder caused by a mutation on the X chromosome. The major signs and symptoms are tremor, ataxia and parkinsonism. Up to one in 2 000 persons over 50 years of age will develop the syndrome. There is reason to believe that too few individuals in Norway undergo testing for this condition.


Assuntos
Ataxia/diagnóstico , Ataxia/genética , Síndrome do Cromossomo X Frágil/diagnóstico , Síndrome do Cromossomo X Frágil/genética , Tremor/diagnóstico , Tremor/genética , Ataxia/tratamento farmacológico , Ataxia/epidemiologia , Diagnóstico Diferencial , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/epidemiologia , Humanos , Noruega/epidemiologia , Transtornos Parkinsonianos/diagnóstico , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/epidemiologia , Transtornos Parkinsonianos/genética , Tremor/tratamento farmacológico , Tremor/epidemiologia
5.
Hum Mol Genet ; 20(11): 2161-70, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21389081

RESUMO

Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder that affects carriers of premutation alleles (55-200 CGG repeats) of the fragile X mental retardation 1 (FMR1) gene. The presence of elevated levels of expanded mRNA found in premutation carriers is believed to be the basis for the pathogenesis in FXTAS, but the exact mechanisms by which the mRNA causes toxicity are not known. In particular, it is not clear whether there is a threshold for a CGG-repeat number below which no cellular dysregulation occurs, or whether toxicity depends on mRNA concentration. We have developed a doxycycline-inducible episomal system that allows us to study separately the effects of CGG-repeat number and mRNA concentration (at fixed CGG-repeat length) in neuroblastoma-derived SK cells. Our findings show that there is a CGG-repeat size threshold for toxicity that lies between 62 and 95 CGG repeats. Interestingly, for repeat sizes of 95 CGG and above, there is a clear negative correlation between mRNA concentration and cell viability. Taken together, our results provide evidence for an RNA-toxicity model with primary dependence on CGG-repeat size and secondary dependence on mRNA concentration, thus formally ruling out any simple titration model that operates in the absence of either protein-binding cooperativity or some form of length-dependent RNA structural transition.


Assuntos
Ataxia/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Expansão das Repetições de Trinucleotídeos , Alelos , Ataxia/patologia , Linhagem Celular , Sobrevivência Celular , Reparo do DNA , Doxiciclina/farmacologia , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/patologia , Expressão Gênica , Genes Reporter , Genótipo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Lamina Tipo A/química , Mutação , Fosforilação , RNA Mensageiro/genética , Transfecção
6.
Mol Autism ; 1(1): 12, 2010 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-20858229

RESUMO

Fragile X syndrome (FXS) is caused by an expanded CGG repeat (> 200 repeats) in the 5' untranslated portion of the fragile mental retardation 1 gene (FMR1), leading to deficiency or absence of the FMR1 protein (FMRP). FMRP is an RNA carrier protein that controls the translation of several other genes that regulate synaptic development and plasticity. Autism occurs in approximately 30% of FXS cases, and pervasive developmental disorder, not otherwise specified (PDD-NOS) occurs in an additional 30% of cases. Premutation repeat expansions (55 to 200 CGG repeats) may also give rise to autism spectrum disorders (ASD), including both autism and PDD-NOS, through a different molecular mechanism that involves a direct toxic effect of the expanded CGG repeat FMR1 mRNA. RNA toxicity can also lead to aging effects including tremor, ataxia and cognitive decline, termed fragile X-associated tremor ataxia syndrome (FXTAS), in premutation carriers in late life. In studies of mice bearing premutation expansions, there is evidence of early postnatal neuronal cell toxicity, presenting as reduced cell longevity, decreased dendritic arborization and altered synaptic morphology. There is also evidence of mitochondrial dysfunction in premutation carriers. Many of the problems with cellular dysregulation in both premutation and full mutation neurons also parallel the cellular abnormalities that have been documented in autism without fragile X mutations. Research regarding dysregulation of neurotransmitter systems in FXS, including the metabotropic glutamate receptor (mGluR)1/5 pathway and γ aminobutyric acid (GABA)A pathways, have led to new targeted treatments for FXS. Preliminary evidence suggests that these new targeted treatments will also be beneficial in non-fragile X forms of autism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...