Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731956

RESUMO

X-ray fluorescence imaging (XFI) can localize diagnostic or theranostic entities utilizing nanoparticle (NP)-based probes at high resolution in vivo, in vitro, and ex vivo. However, small-animal benchtop XFI systems demonstrating high spatial resolution (variable from sub-millimeter to millimeter range) in vivo are still limited to lighter elements (i.e., atomic number Z≤45). This study investigates the feasibility of focusing hard X-rays from solid-target tubes using ellipsoidal lens systems composed of mosaic graphite crystals with the aim of enabling high-resolution in vivo XFI applications with mid-Z (42≤Z≤64) elements. Monte Carlo simulations are performed to characterize the proposed focusing-optics concept and provide quantitative predictions of the XFI sensitivity, in silico tumor-bearing mice models loaded with palladium (Pd) and barium (Ba) NPs. Based on simulation results, the minimum detectable total mass of PdNPs per scan position is expected to be on the order of a few hundred nanograms under in vivo conform conditions. PdNP masses as low as 150 ng to 50 ng could be detectable with a resolution of 600 µm when imaging abdominal tumor lesions across a range of low-dose (0.8 µGy) to high-dose (8 µGy) exposure scenarios. The proposed focusing-optics concept presents a potential step toward realizing XFI with conventional X-ray tubes for high-resolution applications involving interesting NP formulations.


Assuntos
Grafite , Grafite/química , Animais , Camundongos , Imagem Óptica/métodos , Método de Monte Carlo , Nanopartículas/química , Paládio/química , Simulação por Computador , Espectrometria por Raios X/métodos
2.
Front Cardiovasc Med ; 10: 1280899, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38045918

RESUMO

Background: Central blood pressure (cBP) is a better indicator of cardiovascular morbidity and mortality than peripheral BP (pBP). However, direct cBP measurement requires invasive techniques and indirect cBP measurement is based on rigid and empirical transfer functions applied to pBP. Thus, development of a personalized and well-validated method for non-invasive derivation of cBP from pBP is necessary to facilitate the clinical routine. The purpose of the present study was to develop a novel blind source separation tool to separate a single recording of pBP into their pressure waveforms composing its dynamics, to identify the compounds that lead to pressure waveform distortion at the periphery, and to estimate the cBP. The approach is patient-specific and extracts the underlying blind pressure waveforms in pBP without additional brachial cuff calibration or any a priori assumption on the arterial model. Methods: The intra-arterial femoral BPfe and intra-aortic pressure BPao were anonymized digital recordings from previous routine cardiac catheterizations of eight patients at the German Heart Centre Berlin. The underlying pressure waveforms in BPfe were extracted by the single-channel independent component analysis (SCICA). The accuracy of the SCICA model to estimate the whole cBP waveform was evaluated by the mean absolute error (MAE), the root mean square error (RMSE), the relative RMSE (RRMSE), and the intraclass correlation coefficient (ICC). The agreement between the intra-aortic and estimated parameters including systolic (SBP), diastolic (DBP), mean arterial pressure (MAP), and pulse pressure (PP) was evaluated by the regression and Bland-Altman analyses. Results: The SCICA tool estimated the cBP waveform non-invasively from the intra-arterial BPfe with an MAE of 0.159 ± 1.629, an RMSE of 5.153 ± 0.957 mmHg, an RRMSE of 5.424 ± 1.304%, and an ICC of 0.94, as well as two waveforms contributing to morphological distortion at the femoral artery. The regression analysis showed a strong linear trend between the estimated and intra-aortic SBP, DBP, MAP, and PP with high coefficient of determination R2 of 0.98, 0.99, 0.99, and 0.97 respectively. The Bland-Altman plots demonstrated good agreement between estimated and intra-aortic parameters with a mean error and a standard deviation of difference of -0.54 ± 2.42 mmHg [95% confidence interval (CI): -5.28 to 4.20] for SBP, -1.97 ± 1.62 mmHg (95% CI: -5.14 to 1.20) for DBP, -1.49 ± 1.40 mmHg (95% CI: -4.25 to 1.26) for MAP, and 1.43 ± 2.79 mmHg (95% CI: -4.03 to 6.90) for PP. Conclusions: The SCICA approach is a powerful tool that identifies sources contributing to morphological distortion at peripheral arteries and estimates cBP.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38083483

RESUMO

Microwave ablation (MWA) therapy is a well-known technique for locally destroying lung tumors with the help of computed tomography (CT) images. However, tumor recurrence occurs because of insufficient ablation of the tumor. In order to perform an accurate treatment of lung cancer, there is a demand to determine the tumor area precisely. To address the problem at hand, which involves accurately segmenting organs and tumors in CT images obtained during MWA therapy, physicians could benefit from a semantic segmentation method. However, such a method typically requires a large number of images to achieve optimal results through deep learning techniques. To overcome this challenge, our team developed four different (multiple) U-Net based semantic segmentation models that work in conjunction with one another to produce a more precise segmented image, even when working with a relatively small dataset. By combining the highest weight value of segmentation from multiple methods into a single output, we can achieve a more reliable and accurate segmentation outcome. Our approach proved successful in segmenting four different tissue structures, including lungs, lung tumors, and ablated tissues in CT medical images. The Intersection over Union (IoU) is employed to quantitatively evaluate the proposed method. The method shows the highest average IoU, with 0.99 for the background, 0.98 for the lung, 0.77 for the ablated, and 0.54 for the tumor tissue. The results show that employing multiple DL methods is superior to that of individual base-learner models for all four different tissue structures, even in the presence of the relatively small dataset.Clinical relevance- An essential issue of tumor ablation therapy is to know when the entire tumor tissue has completely been destroyed. However, as it is difficult to distinguish between destroyed and living tumor, this is hardly reliable in clinical practice during MWA therapy, especially when working with a small dataset. Improved AI segmentation methods can help to improve performance to reduce recurrence.


Assuntos
Aprendizado Profundo , Neoplasias Pulmonares , Humanos , Processamento de Imagem Assistida por Computador/métodos , Recidiva Local de Neoplasia , Neoplasias Pulmonares/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos
4.
Radiat Environ Biophys ; 62(4): 483-495, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37831188

RESUMO

A major challenge in modelling the decorporation of actinides (An), such as americium (Am), with DTPA (diethylenetriaminepentaacetic acid) is the fact that standard biokinetic models become inadequate for assessing radionuclide intake and estimating the resulting dose, as DTPA perturbs the regular biokinetics of the radionuclide. At present, most attempts existing in the literature are empirical and developed mainly for the interpretation of one or a limited number of specific incorporation cases. Recently, several approaches have been presented with the aim of developing a generic model, one of which reported the unperturbed biokinetics of plutonium (Pu), the chelation process and the behaviour of the chelated compound An-DTPA with a single model structure. The aim of the approach described in this present work is the development of a generic model that is able to describe the biokinetics of Am, DTPA and the chelate Am-DTPA simultaneously. Since accidental intakes in humans present many unknowns and large uncertainties, data from controlled studies in animals were used. In these studies, different amounts of DTPA were administered at different times after contamination with known quantities of Am. To account for the enhancement of faecal excretion and reduction in liver retention, DTPA is assumed to chelate Am not only in extracellular fluids, but also in hepatocytes. A good agreement was found between the predictions of the proposed model and the experimental results for urinary and faecal excretion and accumulation and retention in the liver. However, the decorporation from the skeletal compartment could not be reproduced satisfactorily under these simple assumptions.


Assuntos
Ácido Pentético , Plutônio , Humanos , Ratos , Animais , Ácido Pentético/uso terapêutico , Amerício , Modelos Biológicos , Quelantes/uso terapêutico
5.
Molecules ; 28(11)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37298866

RESUMO

OBJECTIVES: Volatile organic compounds (VOCs) in the breathing air were found to be altered in schizophrenia patients compared to healthy participants. The aim of this study was to confirm these findings and to examine for the first time whether these VOCs are stable or change in concentration during the early treatment course. Moreover, it was investigated whether there is a correlation of the VOCs with the existing psychopathology of schizophrenia patients, i.e., whether the concentration of masses detected in the breath gas changes when the psychopathology of the participants changes. METHODS: The breath of a total of 22 patients with schizophrenia disorder was examined regarding the concentration of VOCs using proton transfer reaction mass spectrometry. The measurements were carried out at baseline and after two weeks at three different time points, the first time immediately after waking up in the morning, after 30 min, and then after 60 min. Furthermore, 22 healthy participants were investigated once as a control group. RESULTS: Using bootstrap mixed model analyses, significant concentration differences were found between schizophrenia patients and healthy control participants (m/z 19, 33, 42, 59, 60, 69, 74, 89, and 93). Moreover, concentration differences were detected between the sexes for masses m/z 42, 45, 57, 69, and 91. Mass m/z 67 and 95 showed significant temporal changes with decreasing concentration during awakening. Significant temporal change over two weeks of treatment could not be detected for any mass. Masses m/z 61, 71, 73, and 79 showed a significant relationship to the respective olanzapine equivalents. The length of hospital stay showed no significant relationship to the masses studied. CONCLUSION: Breath gas analysis is an easy-to-use method to detect differences in VOCs in the breath of schizophrenia patients with high temporal stability. m/z 60 corresponding to trimethylamine might be of potential interest because of its natural affinity to TAAR receptors, currently a novel therapeutic target under investigation. Overall, breath signatures seemed to stable over time in patients with schizophrenia. In the future, the development of a biomarker could potentially have an impact on the early detection of the disease, treatment, and, thus, patient outcome.


Assuntos
Compostos Orgânicos Voláteis , Humanos , Compostos Orgânicos Voláteis/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massas , Biomarcadores , Testes Respiratórios/métodos
6.
Radiologie (Heidelb) ; 63(7): 530-538, 2023 Jul.
Artigo em Alemão | MEDLINE | ID: mdl-37347256

RESUMO

CLINICAL/METHODOLOGICAL ISSUE: Imaging of structures of internal organs often requires ionizing radiation, which is a health risk. Reducing the radiation dose can increase the image noise, which means that images provide less information. STANDARD RADIOLOGICAL METHODS: This problem is observed in commonly used medical imaging modalities such as computed tomography (CT), positron emission tomography (PET), single photon emission computed tomography (SPECT), angiography, fluoroscopy, and any modality that uses ionizing radiation for imaging. METHODOLOGICAL INNOVATIONS: Artificial intelligence (AI) can improve the quality of low-dose images and help minimize radiation exposure. Potential applications are explored, and frameworks and procedures are critically evaluated. PERFORMANCE: The performance of AI models varies. High-performance models could be used in clinical settings in the near future. Several challenges (e.g., quantitative accuracy, insufficient training data) must be addressed for optimal performance and widespread adoption of this technology in the field of medical imaging. PRACTICAL RECOMMENDATIONS: To fully realize the potential of AI and deep learning (DL) in medical imaging, research and development must be intensified. In particular, quality control of AI models must be ensured, and training and testing data must be uncorrelated and quality assured. With sufficient scientific validation and rigorous quality management, AI could contribute to the safe use of low-dose techniques in medical imaging.


Assuntos
Proteção Radiológica , Proteção Radiológica/métodos , Inteligência Artificial , Doses de Radiação , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Tomografia por Emissão de Pósitrons
7.
Insights Imaging ; 14(1): 55, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37005914

RESUMO

PURPOSE: To analyse the existing radiation protection (RP) education and training (E&T) capabilities in the European Union and identify associated needs, problems and challenges. METHOD: An online survey was disseminated via the EURAMED Rocc-n-Roll consortium network and prominent medical societies in the field of radiological research. The survey sections analyse the RP E&T during undergraduate, residency/internship and continuous professional development; RP E&T problems and legal implementation. Differences were analysed by European geographic regions, profession, years of professional experience and main area of practice/research. RESULTS: The majority of the 550 respondents indicated that RP topics are part of undergraduate curricula in all courses for their profession and country (55%); however, hands-on practical training is not included according to 30% of the respondents. The lack of E&T, practical aspects in current E&T, and mandatory continuing E&T were considered the major problems. The legal requirement that obtained higher implementation score was the inclusion of the practical aspects of medical radiological procedures on education (86%), and lower score was obtained for the inclusion of RP E&T on medical and dental school curriculums (61%). CONCLUSIONS: A heterogeneity in RP E&T during undergraduate, residency/internship and continuous professional development is evident across Europe. Differences were noted per area of practice/research, profession, and European geographic region. A large variation in RP E&T problem rating was also obtained.

8.
J Psychiatry Neurosci ; 48(2): E117-E125, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37045476

RESUMO

BACKGROUND: Signatures from the metabolome and microbiome have already been introduced as candidates for diagnostic and treatment support. The aim of this study was to investigate the utility of volatile organic compounds (VOCs) from the breath for detection of schizophrenia and depression. METHODS: Patients with a diagnosis of major depressive disorder (MDD) or schizophrenia, as well as healthy controls, were recruited to participate. After being clinically assessed and receiving instruction, each participant independently collected breath samples for subsequent examination by proton transfer-reaction mass spectrometry. RESULTS: The sample consisted of 104 participants: 36 patients with MDD, 34 patients with schizophrenia and 34 healthy controls. Through mixed-model and deep learning analyses, 5 VOCs contained in the participants' breath samples were detected that significantly differentiated between diagnostic groups and healthy controls, namely VOCs with mass-to-charge ratios (m/z) 60, 69, 74, 88 and 90, which had classification accuracy of 76.8% to distinguish participants with MDD from healthy controls, 83.6% to distinguish participants with schizophrenia from healthy controls and 80.9% to distinguish participants with MDD from those with schizophrenia. No significant associations with medication, illness duration, age of onset or time in hospital were detected for these VOCs. LIMITATIONS: The sample size did not allow generalization, and confounders such as nutrition and medication need to be tested. CONCLUSION: This study established promising results for the use of human breath gas for detection of schizophrenia and MDD. Two VOCs, 1 with m/z 60 (identified as trimethylamine) and 1 with m/z 90 (identified as butyric acid) could then be further connected to the interworking of the microbiota-gut-brain axis.


Assuntos
Transtorno Depressivo Maior , Esquizofrenia , Compostos Orgânicos Voláteis , Humanos , Compostos Orgânicos Voláteis/análise , Transtorno Depressivo Maior/diagnóstico , Esquizofrenia/diagnóstico , Eixo Encéfalo-Intestino
9.
Front Immunol ; 14: 1281674, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38193076

RESUMO

Purpose: Earlier research has identified several potentially predictive features including biomarkers associated with trauma, which can be used to assess the risk for harmful outcomes of polytraumatized patients. These features encompass various aspects such as the nature and severity of the injury, accompanying health conditions, immune and inflammatory markers, and blood parameters linked to organ functioning, however their applicability is limited. Numerous indicators relevant to the patients` outcome are routinely gathered in the intensive care unit (ICU) and recorded in electronic medical records, rendering them suitable predictors for risk assessment of polytraumatized patients. Methods: 317 polytraumatized patients were included, and the influence of 29 clinical and biological features on the complication patterns for systemic inflammatory response syndrome (SIRS), pneumonia and sepsis were analyzed with a machine learning workflow including clustering, classification and explainability using SHapley Additive exPlanations (SHAP) values. The predictive ability of the analyzed features within three days after admission to the hospital were compared based on patient-specific outcomes using receiver-operating characteristics. Results: A correlation and clustering analysis revealed that distinct patterns of injury and biomarker patterns were observed for the major complication classes. A k-means clustering suggested four different clusters based on the major complications SIRS, pneumonia and sepsis as well as a patient subgroup that developed no complications. For classification of the outcome groups with no complications, pneumonia and sepsis based on boosting ensemble classification, 90% were correctly classified as low-risk group (no complications). For the high-risk groups associated with development of pneumonia and sepsis, 80% of the patients were correctly identified. The explainability analysis with SHAP values identified the top-ranking features that had the largest impact on the development of adverse outcome patterns. For both investigated risk scenarios (infectious complications and long ICU stay) the most important features are SOFA score, Glasgow Coma Scale, lactate, GGT and hemoglobin blood concentration. Conclusion: The machine learning-based identification of prognostic feature patterns in patients with traumatic injuries may improve tailoring personalized treatment modalities to mitigate the adverse outcomes in high-risk patient clusters.


Assuntos
Doenças Transmissíveis , Traumatismo Múltiplo , Pneumonia , Sepse , Humanos , Traumatismo Múltiplo/diagnóstico , Sepse/diagnóstico , Síndrome de Resposta Inflamatória Sistêmica/diagnóstico , Medição de Risco , Ácido Láctico , Aprendizado de Máquina
10.
Insights Imaging ; 13(1): 142, 2022 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-36057698

RESUMO

BACKGROUND: A Strengths, weaknesses, opportunities and threats analysis was performed to understand the status quo of education and training in radiation protection (RP) and to develop a coordinated European approach to RP training needs based on stakeholder consensus and existing activities in the field. Fourteen team members represented six European professional societies, one European voluntary organisation, two international healthcare organisations and five professions, namely: Medical Physicists; Nuclear Medicine Physicians; Radiologists; Radiation Oncologists and Radiographers. Four subgroups analysed the "Strengths", "Weaknesses", "Opportunities" and "Threats" related to E&T in RP developed under previous European Union (EU) programmes and on the Guidelines on Radiation Protection Education and Training of Medical Professionals in the EU. RESULTS: Consensus agreement identified four themes for strengths and opportunities, namely: (1) existing structures and training recommendations; (2) RP training needs assessment and education & training (E&T) model(s) development; (3) E&T dissemination, harmonisation, and accreditation; (4) financial supports. Weaknesses and Threats analysis identified two themes: (1) awareness and prioritisation at a national/global level and (2) awareness and prioritisation by healthcare professional groups and researchers. CONCLUSIONS: A lack of effective implementation of RP principles in daily practice was identified. EuRnR strategic planning needs to consider processes at European, national and local levels. Success is dependent upon efficient governance structures and expert leadership. Financial support is required to allow the stakeholder professional agencies to have sufficient resources to achieve a pan European radiation protection training network which is sustainable and accredited across multiple national domains.

11.
Front Psychiatry ; 13: 819607, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903642

RESUMO

Major depressive disorder (MDD) is a widespread common disorder. Up to now, there are no easy and frequent to use non-invasive biomarkers that could guide the diagnosis and treatment of MDD. The aim of this study was to investigate whether there are different mass concentrations of volatile organic compounds (VOCs) in the exhaled breath between patients with MDD and healthy controls. For this purpose, patients with MDD according to DSM-V and healthy subjects were investigated. VOCs contained in the breath were collected immediately after awakening, after 30 min, and after 60 min in a respective breath sample and measured using PRT-MS (proton-transfer-reaction mass spectrometry). Concentrations of masses m/z 88, 89, and 90 were significantly decreased in patients with MDD compared with healthy controls. Moreover, changes during the time in mass concentrations of m/z 93 and 69 significantly differed between groups. Differentiation between groups was possible with an AUCs of 0.80-0.94 in ROC analyses. In this first study, VOCs differed between patients and controls, and therefore, might be a promising tool for future studies. Altered masses are conceivable with energy metabolism in a variety of biochemical processes and involvement of the brain-gut-lung-microbiome axis.

12.
J Med Imaging (Bellingham) ; 9(Suppl 1): 012207, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35761820

RESUMO

Purpose: To commemorate the 50th anniversary of the first SPIE Medical Imaging meeting, we highlight some of the important publications published in the conference proceedings. Approach: We determined the top cited and downloaded papers. We also asked members of the editorial board of the Journal of Medical Imaging to select their favorite papers. Results: There was very little overlap between the three methods of highlighting papers. The downloads were mostly recent papers, whereas the favorite papers were mostly older papers. Conclusions: The three different methods combined provide an overview of the highlights of the papers published in the SPIE Medical Imaging conference proceedings over the last 50 years.

13.
J Med Imaging (Bellingham) ; 9(Suppl 1): 012205, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35309720

RESUMO

Purpose: For 50 years now, SPIE Medical Imaging (MI) conferences have been the premier forum for disseminating and sharing new ideas, technologies, and concepts on the physics of MI. Approach: Our overarching objective is to demonstrate and highlight the major trajectories of imaging physics and how they are informed by the community and science present and presented at SPIE MI conferences from its inception to now. Results: These contributions range from the development of image science, image quality metrology, and image reconstruction to digital x-ray detectors that have revolutionized MI modalities including radiography, mammography, fluoroscopy, tomosynthesis, and computed tomography (CT). Recent advances in detector technology such as photon-counting detectors continue to enable new capabilities in MI. Conclusion: As we celebrate the past 50 years, we are also excited about what the next 50 years of SPIE MI will bring to the physics of MI.

14.
Eur Radiol ; 32(8): 5525-5531, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35294584

RESUMO

The terms "notifications" and "alerts" for medical exposures are used by several national and international organisations. Recommendations for CT scanners have been published by the American Association of Physicists in Medicine. Some interventional radiology societies as well as national authorities have also published dose notifications for fluoroscopy-guided interventional procedures. Notifications and alerts may also be useful for optimisation and to avoid unintended and accidental exposures. The main interest in using these values for high-dose procedures (CT and interventional) is to optimise imaging procedures, reducing the probability of stochastic effects and avoiding tissue reactions. Alerts in X-ray systems may be considered before procedures (as in CT), during procedures (in some interventional radiology systems), and after procedures, when the patient radiation dose results are known and processed. This review summarises the different uses of notifications and alerts to help in optimisation for CT and for fluoroscopy-guided interventional procedures as well as in the analysis of unintended and accidental medical exposures. The paper also includes cautions in setting the alert values and discusses the benefits of using patient dose management systems for the alerts, their registry and follow-up, and the differences between notifications, alerts, and trigger levels for individual procedures and the terms used for the collective approach, such as diagnostic reference levels. KEY POINTS: • Notifications and alerts on patient dose values for computed tomography (CT) and fluoroscopy-guided interventional procedures (FGIP) allow to improve radiation safety and contribute to the avoidance of radiation injuries and unintended and accidental exposures. • Alerts may be established before the imaging procedures (as in CT) or during and after the procedures as for FGIP. • Dose management systems should include notifications and alerts and their registry for the hospital quality programmes.


Assuntos
Proteção Radiológica , Fluoroscopia/métodos , Humanos , Doses de Radiação , Proteção Radiológica/métodos , Radiografia Intervencionista , Radiologia Intervencionista/métodos , Tomografia Computadorizada por Raios X/métodos
15.
J Transl Med ; 20(1): 137, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35303930

RESUMO

BACKGROUND: Medical applications of ionising radiation and associated radiation protection research often encounter long delays and inconsistent implementation when translated into clinical practice. A coordinated effort is needed to analyse the research needs for innovation transfer in radiation-based high-quality healthcare across Europe which can inform the development of an innovation transfer framework tailored for equitable implementation of radiation research at scale. METHODS: Between March and September 2021 a Delphi methodology was employed to gain consensus on key translational challenges from a range of professional stakeholders. A total of three Delphi rounds were conducted using a series of electronic surveys comprised of open-ended and closed-type questions. The surveys were disseminated via the EURAMED Rocc-n-Roll consortium network and prominent medical societies in the field. Approximately 350 professionals were invited to participate. Participants' level of agreement with each generated statement was captured using a 6-point Likert scale. Consensus was defined as median ≥ 4 with ≥ 60% of responses in the upper tertile of the scale. Additionally, the stability of responses across rounds was assessed. RESULTS: In the first Delphi round a multidisciplinary panel of 20 generated 127 unique statements. The second and third Delphi rounds recruited a broader sample of 130 individuals to rate the extent to which they agreed with each statement as a key translational challenge. A total of 60 consensus statements resulted from the iterative Delphi process of which 55 demonstrated good stability. Ten statements were identified as high priority challenges with ≥ 80% of statement ratings either 'Agree' or 'Strongly Agree'. CONCLUSION: A lack of interoperability between systems, insufficient resources, unsatisfactory education and training, and the need for greater public awareness surrounding the benefits, risks, and applications of ionising radiation were identified as principal translational challenges. These findings will help to inform a tailored innovation transfer framework for medical radiation research.


Assuntos
Proteção Radiológica , Consenso , Técnica Delphi , Humanos , Radiação Ionizante , Inquéritos e Questionários
16.
World J Biol Psychiatry ; 23(10): 773-784, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35171077

RESUMO

OBJECTIVES: This study aims to find out whether volatile organic compounds (VOCs) from exhaled breath differ significantly between patients with schizophrenia and healthy controls and whether it might be possible to create an algorithm that can predict the likelihood of suffering from schizophrenia. METHODS: To test this theory, a group of patients with clinically diagnosed acute schizophrenia as well as a healthy comparison group has been investigated, which have given breath samples during awakening response right after awakening, after 30 min and after 60 min. The VOCs were measured using Proton-Transfer-Reaction Mass Spectrometry. RESULTS: By applying bootstrap with mixed model analysis (n = 1000), we detected 10 signatures (m/z 39, 40, 59, 60, 69, 70, 74, 85, 88 and 90) showing reduced concentration in patients with schizophrenia compared to healthy controls. These could safely discriminate patients and controls and were not influenced by smoking. Logistic regression forward method achieved an area under the receiver operating characteristic curve (AUC) of 0.91 and an accuracy of 82% and a machine learning approach with bartMachine an AUC of 0.96 and an accuracy of 91%. CONCLUSION: Breath gas analysis is easy to apply, well tolerated and seems to be a promising candidate for further studies on diagnostic and predictive clinical utility.


Assuntos
Esquizofrenia , Compostos Orgânicos Voláteis , Humanos , Compostos Orgânicos Voláteis/análise , Esquizofrenia/diagnóstico , Expiração , Testes Respiratórios/métodos , Espectrometria de Massas/métodos
17.
Front Psychiatry ; 13: 1061326, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36590606

RESUMO

Background: Major depressive disorder (MDD) is one of the most common psychiatric disorders with multifactorial etiologies. Metabolomics has recently emerged as a particularly potential quantitative tool that provides a multi-parametric signature specific to several mechanisms underlying the heterogeneous pathophysiology of MDD. The main purpose of the present study was to investigate possibilities and limitations of breath-based metabolomics, breathomics patterns to discriminate MDD patients from healthy controls (HCs) and identify the altered metabolic pathways in MDD. Methods: Breath samples were collected in Tedlar bags at awakening, 30 and 60 min after awakening from 26 patients with MDD and 25 HCs. The non-targeted breathomics analysis was carried out by proton transfer reaction mass spectrometry. The univariate analysis was first performed by T-test to rank potential biomarkers. The metabolomic pathway analysis and hierarchical clustering analysis (HCA) were performed to group the significant metabolites involved in the same metabolic pathways or networks. Moreover, a support vector machine (SVM) predictive model was built to identify the potential metabolites in the altered pathways and clusters. The accuracy of the SVM model was evaluated by receiver operating characteristics (ROC) analysis. Results: A total of 23 differential exhaled breath metabolites were significantly altered in patients with MDD compared with HCs and mapped in five significant metabolic pathways including aminoacyl-tRNA biosynthesis (p = 0.0055), branched chain amino acids valine, leucine and isoleucine biosynthesis (p = 0.0060), glycolysis and gluconeogenesis (p = 0.0067), nicotinate and nicotinamide metabolism (p = 0.0213) and pyruvate metabolism (p = 0.0440). Moreover, the SVM predictive model showed that butylamine (p = 0.0005, pFDR=0.0006), 3-methylpyridine (p = 0.0002, pFDR = 0.0012), endogenous aliphatic ethanol isotope (p = 0.0073, pFDR = 0.0174), valeric acid (p = 0.005, pFDR = 0.0162) and isoprene (p = 0.038, pFDR = 0.045) were potential metabolites within identified clusters with HCA and altered pathways, and discriminated between patients with MDD and non-depressed ones with high sensitivity (0.88), specificity (0.96) and area under curve of ROC (0.96). Conclusion: According to the results of this study, the non-targeted breathomics analysis with high-throughput sensitive analytical technologies coupled to advanced computational tools approaches offer completely new insights into peripheral biochemical changes in MDD.

18.
EJNMMI Phys ; 8(1): 15, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33595735

RESUMO

BACKGROUND: SPECT-CT using radiolabeled phosphonates is considered a standard for assessing bone metabolism (e.g., in patients with osteoarthritis of knee joints). However, SPECT can be influenced by metal artifacts in CT caused by endoprostheses affecting attenuation correction. The current study examined the effects of metal artifacts in CT of a specific endoprosthesis design on quantitative hybrid SPECT-CT imaging. The implant was positioned inside a phantom homogenously filled with activity (955 MBq 99mTc). CT imaging was performed for different X-ray tube currents (I = 10, 40, 125 mA) and table pitches (p = 0.562 and 1.375). X-ray tube voltage (U = 120 kVp) and primary collimation (16 × 0.625 mm) were kept constant for all scans. The CT reconstruction was performed with five different reconstruction kernels (slice thickness, 1.25 mm and 3.75 mm, each 512 × 512 matrix). Effects from metal artifacts were analyzed for different CT scans and reconstruction protocols. ROI analysis of CT and SPECT data was performed for two slice positions/volumes representing the typical locations for target structures relative to the prosthesis (e.g., femur and tibia). A reference region (homogenous activity concentration without influence from metal artifacts) was analyzed for comparison. RESULTS: Significant effects caused by CT metal artifacts on attenuation-corrected SPECT were observed for the different slice positions, reconstructed slice thicknesses of CT data, and pitch and CT-reconstruction kernels used (all, p < 0.0001). Based on the optimization, a set of three protocols was identified minimizing the effect of CT metal artifacts on SPECT data. Regarding the reference region, the activity concentration in the anatomically correlated volume was underestimated by 8.9-10.1%. A slight inhomogeneity of the reconstructed activity concentration was detected inside the regions with a median up to 0.81% (p < 0.0001). Using an X-ray tube current of 40 mA showed the best result, balancing quantification and CT exposure. CONCLUSION: The results of this study demonstrate the need for the evaluation of SPECT-CT protocols in prosthesis imaging. Phantom experiments demonstrated the possibility for quantitative SPECT-CT of bone turnover in a specific prosthesis design. Meanwhile, a systematic bias caused by metal implants on quantitative SPECT data has to be considered.

19.
Insights Imaging ; 12(1): 3, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33411026

RESUMO

This article introduces the European Society of Radiology's EuroSafe Imaging initiative in the year of its 6th anniversary. The European and global radiation protection frameworks are outlined and the role of the EuroSafe Imaging initiative's Call for Action in successfully achieving international radiation protection goals as set out by those frameworks is detailed.

20.
Int J Radiat Biol ; 96(3): 324-339, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31539290

RESUMO

Purpose: To summarize existing knowledge and to understand individual response to radiation exposure, the MELODI Association together with CONCERT European Joint Programme has organized a workshop in March 2018 on radiation sensitivity and susceptibility.Methods: The workshop reviewed the current evidence on this matter, to inform the MELODI Strategic Research Agenda (SRA), to determine social and scientific needs and to come up with recommendations for suitable and feasible future research initiatives to be taken for the benefit of an improved medical diagnosis and treatment as well as for radiation protection.Results: The present paper gives an overview of the current evidence in this field, including potential effect modifiers such as age, gender, genetic profile, and health status of the exposed population, based on clinical and epidemiological observations.Conclusion: The authors conclude with the following recommendations for the way forward in radiation research: (a) there is need for large (prospective) cohort studies; (b) build upon existing radiation research cohorts; (c) use data from well-defined cohorts with good exposure assessment and biological material already collected; (d) focus on study quality with standardized data collection and reporting; (e) improve statistical analysis; (f) cooperation between radiobiology and epidemiology; and (g) take consequences of radiosensitivity and radiosusceptibility into account.


Assuntos
Lesões por Radiação/epidemiologia , Proteção Radiológica , Tolerância a Radiação , Animais , Congressos como Assunto , Europa (Continente) , Humanos , Camundongos , Doses de Radiação , Exposição à Radiação , Lesões por Radiação/prevenção & controle , Monitoramento de Radiação , Radiobiologia , Radiometria , Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...