Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
HardwareX ; 13: e00407, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36875260

RESUMO

Modern microscopy relies increasingly on microscope automation to improve throughput, ensure reproducibility or observe rare events. Automation requires computer control of the important elements of the microscope. Furthermore, optical elements that are usually fixed or manually movable can be placed on electronically-controllable elements. In most cases, a central electronics board is necessary to generate the control signals they require and to communicate with the computer. For such tasks, Arduino microcontrollers are widely used due to their low cost and programming entry barrier. However, they are limiting in their performance for applications that require high-speed or multiple parallel processes. Field programmable gate arrays (FPGA) are the perfect technology for high-speed microscope control, as they are capable of processing signals in parallel and with high temporal precision. While plummeting prices made the technology available to consumers, a major hurdle remaining is the complex languages used to configure them. In this work, we used an affordable FPGA, delivered with an open-source and friendly-to-use programming language, to create a versatile microscope control platform called MicroFPGA. It is capable of synchronously triggering cameras and multiple lasers following complex patterns, as well as generating various signals used to control microscope elements such as filter wheels, servomotor stages, flip-mirrors, laser power or acousto-optic modulators. MicroFPGA is open-source and we provide online Micro-Manager, Java, Python and LabVIEW libraries, together with blueprints and tutorials.

2.
Science ; 379(6636): 1010-1015, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36893247

RESUMO

Dynamic measurements of molecular machines can provide invaluable insights into their mechanism, but these measurements have been challenging in living cells. Here, we developed live-cell tracking of single fluorophores with nanometer spatial and millisecond temporal resolution in two and three dimensions using the recently introduced super-resolution technique MINFLUX. Using this approach, we resolved the precise stepping motion of the motor protein kinesin-1 as it walked on microtubules in living cells. Nanoscopic tracking of motors walking on the microtubules of fixed cells also enabled us to resolve the architecture of the microtubule cytoskeleton with protofilament resolution.


Assuntos
Células , Cinesinas , Microscopia de Fluorescência , Microtúbulos , Células/química , Células/metabolismo , Corantes Fluorescentes/análise , Cinesinas/química , Cinesinas/metabolismo , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Microtúbulos/química , Microtúbulos/metabolismo , Movimento (Física) , Humanos
4.
Nat Methods ; 20(1): 139-148, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36522500

RESUMO

Quantitative data analysis is important for any single-molecule localization microscopy (SMLM) workflow to extract biological insights from the coordinates of the single fluorophores. However, current approaches are restricted to simple geometries or require identical structures. Here, we present LocMoFit (Localization Model Fit), an open-source framework to fit an arbitrary model to localization coordinates. It extracts meaningful parameters from individual structures and can select the most suitable model. In addition to analyzing complex, heterogeneous and dynamic structures for in situ structural biology, we demonstrate how LocMoFit can assemble multi-protein distribution maps of six nuclear pore components, calculate single-particle averages without any assumption about geometry or symmetry, and perform a time-resolved reconstruction of the highly dynamic endocytic process from static snapshots. We provide extensive simulation and visualization routines to validate the robustness of LocMoFit and tutorials to enable any user to increase the information content they can extract from their SMLM data.


Assuntos
Corantes Fluorescentes , Imagem Individual de Molécula , Funções Verossimilhança , Corantes Fluorescentes/química
5.
Adv Biol (Weinh) ; 6(7): e2000337, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35481696

RESUMO

In the rapidly expanding field of molecular optogenetics, the performance of the engineered systems relies on the switching properties of the underlying genetically encoded photoreceptors. In this study, the bacterial phytochromes Cph1 and DrBphP are engineered, recombinantly produced in Escherichia coli, and characterized regarding their switching properties in order to synthesize biohybrid hydrogels with increased light-responsive stiffness modulations. The R472A mutant of the cyanobacterial phytochrome 1 (Cph1) is identified to confer the phytochrome-based hydrogels with an increased dynamic range for the storage modulus but a different light-response for the loss modulus compared to the original Cph1-based hydrogel. Stiffness measurements of human atrial fibroblasts grown on these hydrogels suggest that differences in the loss modulus at comparable changes in the storage modulus affect cell stiffness and thus underline the importance of matrix viscoelasticity on cellular mechanotransduction. The hydrogels presented here are of interest for analyzing how mammalian cells respond to dynamic viscoelastic cues. Moreover, the Cph1-R472A mutant, as well as the benchmarking of the other phytochrome variants, are expected to foster the development and performance of future optogenetic systems.


Assuntos
Proteínas de Bactérias , Hidrogéis , Mecanotransdução Celular , Optogenética , Fotorreceptores Microbianos , Fitocromo , Proteínas Quinases , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/efeitos da radiação , Benchmarking , Cianobactérias/genética , Escherichia coli/metabolismo , Fibroblastos , Engenharia Genética , Humanos , Hidrogéis/química , Mecanotransdução Celular/efeitos da radiação , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/genética , Fotorreceptores Microbianos/efeitos da radiação , Fitocromo/química , Fitocromo/genética , Fitocromo/efeitos da radiação , Proteínas Quinases/química , Proteínas Quinases/genética , Proteínas Quinases/efeitos da radiação , Viscosidade
6.
Annu Rev Biophys ; 51: 301-326, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35119945

RESUMO

Super-resolution microscopy techniques, and specifically single-molecule localization microscopy (SMLM), are approaching nanometer resolution inside cells and thus have great potential to complement structural biology techniques such as electron microscopy for structural cell biology. In this review, we introduce the different flavors of super-resolution microscopy, with a special emphasis on SMLM and MINFLUX (minimal photon flux). We summarize recent technical developments that pushed these localization-based techniques to structural scales and review the experimental conditions that are key to obtaining data of the highest quality. Furthermore, we give an overview of different analysis methods and highlight studies that used SMLM to gain structural insights into biologically relevant molecular machines. Ultimately, we give our perspective on what is needed to push the resolution of these techniques even further and to apply them to investigating dynamic structural rearrangements in living cells.


Assuntos
Imagem Individual de Molécula , Microscopia Eletrônica , Imagem Individual de Molécula/métodos
8.
Nat Methods ; 18(9): 1082-1090, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34480155

RESUMO

Single-molecule localization microscopy (SMLM) has had remarkable success in imaging cellular structures with nanometer resolution, but standard analysis algorithms require sparse emitters, which limits imaging speed and labeling density. Here, we overcome this major limitation using deep learning. We developed DECODE (deep context dependent), a computational tool that can localize single emitters at high density in three dimensions with highest accuracy for a large range of imaging modalities and conditions. In a public software benchmark competition, it outperformed all other fitters on 12 out of 12 datasets when comparing both detection accuracy and localization error, often by a substantial margin. DECODE allowed us to acquire fast dynamic live-cell SMLM data with reduced light exposure and to image microtubules at ultra-high labeling density. Packaged for simple installation and use, DECODE will enable many laboratories to reduce imaging times and increase localization density in SMLM.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Imagem Individual de Molécula/métodos , Animais , Células COS , Chlorocebus aethiops , Bases de Dados Factuais , Software
9.
J Am Chem Soc ; 143(36): 14592-14600, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34460256

RESUMO

Rhodamines are the most important class of fluorophores for applications in live-cell fluorescence microscopy. This is mainly because rhodamines exist in a dynamic equilibrium between a fluorescent zwitterion and a nonfluorescent but cell-permeable spirocyclic form. Different imaging applications require different positions of this dynamic equilibrium, and an adjustment of the equilibrium poses a challenge for the design of suitable probes. We describe here how the conversion of the ortho-carboxy moiety of a given rhodamine into substituted acyl benzenesulfonamides and alkylamides permits the systematic tuning of the equilibrium of spirocyclization with unprecedented accuracy and over a large range. This allows one to transform the same rhodamine into either a highly fluorogenic and cell-permeable probe for live-cell-stimulated emission depletion (STED) microscopy or a spontaneously blinking dye for single-molecule localization microscopy (SMLM). We used this approach to generate differently colored probes optimized for different labeling systems and imaging applications.

10.
Mol Biol Cell ; 32(17): 1523-1533, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34191541

RESUMO

Nuclear pore complexes (NPCs) are large macromolecular machines that mediate the traffic between the nucleus and the cytoplasm. In vertebrates, each NPC consists of ∼1000 proteins, termed nucleoporins, and has a mass of more than 100 MDa. While a pseudo-atomic static model of the central scaffold of the NPC has recently been assembled by integrating data from isolated proteins and complexes, many structural components still remain elusive due to the enormous size and flexibility of the NPC. Here, we explored the power of three-dimensional (3D) superresolution microscopy combined with computational classification and averaging to explore the 3D structure of the NPC in single human cells. We show that this approach can build the first integrated 3D structural map containing both central as well as peripheral NPC subunits with molecular specificity and nanoscale resolution. Our unbiased classification of more than 10,000 individual NPCs indicates that the nuclear ring and the nuclear basket can adopt different conformations. Our approach opens up the exciting possibility to relate different structural states of the NPC to function in situ.


Assuntos
Microscopia de Fluorescência/métodos , Complexo de Proteínas Formadoras de Poros Nucleares/ultraestrutura , Poro Nuclear/ultraestrutura , Animais , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Humanos , Poro Nuclear/metabolismo , Poro Nuclear/fisiologia , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo
11.
Methods Mol Biol ; 2173: 217-231, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32651921

RESUMO

Synthetic extracellular matrices with reversibly adjustable mechanical properties are essential for the investigation of how cells respond to dynamic mechanical cues as occurring in living organisms. One interesting approach to engineer dynamic biomaterials is the incorporation of photoreceptors from cyanobacteria or plants into polymer materials. Here, we give an overview of existing photoreceptor-based biomaterials and describe a detailed protocol for the synthesis of a phytochrome-based extracellular matrix (CyPhyGel). Using cell-compatible light in the red and far-red spectrum, the mechanical properties of this matrix can be adjusted in a fully reversible, wavelength-specific, and dose-dependent manner with high spatiotemporal control.


Assuntos
Luz , Fitocromo/metabolismo , Matriz Extracelular/metabolismo , Hidrogéis/química , Optogenética/métodos , Análise Espaço-Temporal
12.
J Cell Biol ; 219(5)2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32211899

RESUMO

The synaptonemal complex (SC) is a tripartite protein scaffold that forms between homologous chromosomes during meiosis. Although the SC is essential for stable homologue pairing and crossover recombination in diverse eukaryotes, it is unknown how individual components assemble into the highly conserved SC structure. Here we report the biochemical identification of two new SC components, SYP-5 and SYP-6, in Caenorhabditis elegans. SYP-5 and SYP-6 are paralogous to each other and play redundant roles in synapsis, providing an explanation for why these genes have evaded previous genetic screens. Superresolution microscopy reveals that they localize between the chromosome axes and span the width of the SC in a head-to-head manner, similar to the orientation of other known transverse filament proteins. Using genetic redundancy and structure-function analyses to truncate C-terminal tails of SYP-5/6, we provide evidence supporting the role of SC in both limiting and promoting crossover formation.


Assuntos
Caenorhabditis elegans/genética , Proteínas Cromossômicas não Histona/genética , Recombinação Genética/genética , Complexo Sinaptonêmico/genética , Animais , Pareamento Cromossômico/genética , Cromossomos/genética , Troca Genética/genética , Meiose/genética , Mutação/genética
13.
Nat Methods ; 17(2): 217-224, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31932776

RESUMO

The ultimate goal of biological super-resolution fluorescence microscopy is to provide three-dimensional resolution at the size scale of a fluorescent marker. Here we show that by localizing individual switchable fluorophores with a probing donut-shaped excitation beam, MINFLUX nanoscopy can provide resolutions in the range of 1 to 3 nm for structures in fixed and living cells. This progress has been facilitated by approaching each fluorophore iteratively with the probing-donut minimum, making the resolution essentially uniform and isotropic over scalable fields of view. MINFLUX imaging of nuclear pore complexes of a mammalian cell shows that this true nanometer-scale resolution is obtained in three dimensions and in two color channels. Relying on fewer detected photons than standard camera-based localization, MINFLUX nanoscopy is poised to open a new chapter in the imaging of protein complexes and distributions in fixed and living cells.


Assuntos
Cor , Microscopia de Fluorescência/métodos , Animais , Corantes Fluorescentes/química , Humanos , Processamento de Imagem Assistida por Computador
14.
Nat Commun ; 10(1): 4580, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31594948

RESUMO

Photoactivatable fluorophores are important for single-particle tracking and super-resolution microscopy. Here we present a photoactivatable fluorophore that forms a bright silicon rhodamine derivative through a light-dependent protonation. In contrast to other photoactivatable fluorophores, no caging groups are required, nor are there any undesired side-products released. Using this photoactivatable fluorophore, we create probes for HaloTag and actin for live-cell single-molecule localization microscopy and single-particle tracking experiments. The unusual mechanism of photoactivation and the fluorophore's outstanding spectroscopic properties make it a powerful tool for live-cell super-resolution microscopy.


Assuntos
Corantes Fluorescentes/efeitos da radiação , Microscopia Intravital/métodos , Rodaminas/efeitos da radiação , Silício/efeitos da radiação , Imagem Individual de Molécula/métodos , Animais , Células COS , Chlorocebus aethiops , Corantes Fluorescentes/química , Células HeLa , Humanos , Luz , Microscopia de Fluorescência/métodos , Processos Fotoquímicos/efeitos da radiação , Prótons , Rodaminas/química , Silício/química
16.
Nat Methods ; 16(10): 1045-1053, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31562488

RESUMO

Quantitative fluorescence and superresolution microscopy are often limited by insufficient data quality or artifacts. In this context, it is essential to have biologically relevant control samples to benchmark and optimize the quality of microscopes, labels and imaging conditions. Here, we exploit the stereotypic arrangement of proteins in the nuclear pore complex as in situ reference structures to characterize the performance of a variety of microscopy modalities. We created four genome edited cell lines in which we endogenously labeled the nucleoporin Nup96 with mEGFP, SNAP-tag, HaloTag or the photoconvertible fluorescent protein mMaple. We demonstrate their use (1) as three-dimensional resolution standards for calibration and quality control, (2) to quantify absolute labeling efficiencies and (3) as precise reference standards for molecular counting. These cell lines will enable the broader community to assess the quality of their microscopes and labels, and to perform quantitative, absolute measurements.


Assuntos
Microscopia de Fluorescência/normas , Poro Nuclear , Linhagem Celular , Humanos , Microscopia de Fluorescência/métodos , Padrões de Referência
17.
ACS Synth Biol ; 8(10): 2442-2450, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31526004

RESUMO

Phytochromes are important photoreceptors of plants, bacteria, and fungi responsive to light in the red and far-red spectrum. For increasing applications in basic research, synthetic biology, and materials sciences, it is required to recombinantly produce and purify phytochromes in high amounts. An ideal host organism for this purpose is E. coli due to its widespread use, fast growth, and ability for high-cell-density fermentation. Here, we describe the development of a generic platform for the production of phytochromes in E. coli that is compatible with high-cell-density fermentation. We exemplify our approach by the production of the photosensory domains of phytochrome B (PhyB) from A. thaliana and of the cyanobacterial phytochrome 1 (Cph1) from Synechocystis PCC 6803 in the multigram scale per 10 L fermentation run.


Assuntos
Escherichia coli/metabolismo , Fermentação/fisiologia , Fitocromo/metabolismo , Arabidopsis/metabolismo , Proteínas de Bactérias/metabolismo , Cianobactérias/metabolismo , Luz , Synechocystis/metabolismo
18.
Biomed Opt Express ; 10(6): 2708-2718, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31259045

RESUMO

Three-dimensional single molecule localization microscopy relies on the fitting of the individual molecules with a point spread function (PSF) model. The reconstructed images often show local squeezing or expansion in z. A common cause is depth-induced aberrations in conjunction with an imperfect PSF model calibrated from beads on a coverslip, resulting in a mismatch between measured PSF and real PSF. Here, we developed a strategy for accurate z-localization in which we use the imperfect PSF model for fitting, determine the fitting errors and correct for them in a post-processing step. We present an open-source software tool and a simple experimental calibration procedure that allow retrieving accurate z-positions in any PSF engineering approach or fitting modality, even at large imaging depths.

19.
Nat Commun ; 10(1): 2379, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31147535

RESUMO

Multicolor single-molecule localization microscopy (λSMLM) is a powerful technique to reveal the relative nanoscale organization and potential colocalization between different molecular species. While several standard analysis methods exist for pixel-based images, λSMLM still lacks such a standard. Moreover, existing methods only work on 2D data and are usually sensitive to the relative molecular organization, a very important parameter to consider in quantitative SMLM. Here, we present an efficient, parameter-free colocalization analysis method for 2D and 3D λSMLM using tessellation analysis. We demonstrate that our method allows for the efficient computation of several popular colocalization estimators directly from molecular coordinates and illustrate its capability to analyze multicolor SMLM data in a robust and efficient manner.

20.
Cell ; 174(4): 884-896.e17, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30057119

RESUMO

Clathrin-mediated endocytosis is an essential cellular function in all eukaryotes that is driven by a self-assembled macromolecular machine of over 50 different proteins in tens to hundreds of copies. How these proteins are organized to produce endocytic vesicles with high precision and efficiency is not understood. Here, we developed high-throughput superresolution microscopy to reconstruct the nanoscale structural organization of 23 endocytic proteins from over 100,000 endocytic sites in yeast. We found that proteins assemble by radially ordered recruitment according to function. WASP family proteins form a circular nanoscale template on the membrane to spatially control actin nucleation during vesicle formation. Mathematical modeling of actin polymerization showed that this WASP nano-template optimizes force generation for membrane invagination and substantially increases the efficiency of endocytosis. Such nanoscale pre-patterning of actin nucleation may represent a general design principle for directional force generation in membrane remodeling processes such as during cell migration and division.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Endocitose/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vesículas Secretórias/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Actinas/química , Membrana Celular/metabolismo , Microscopia de Fluorescência , Modelos Teóricos , Conformação Proteica , Família de Proteínas da Síndrome de Wiskott-Aldrich/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...