Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 30(8): 1653-1666, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33969912

RESUMO

Most of the structural proteins known today are composed of domains that carry their own functions while keeping their structural properties. It is supposed that such domains, when taken out of the context of the whole protein, can retain their original structure and function to a certain extent. Information on the specific functional and structural characteristics of individual domains in a new context of artificial fusion proteins may help to reveal the rules of internal and external domain communication. Moreover, this could also help explain the mechanism of such communication and address how the mutual allosteric effect plays a role in a such multi-domain protein system. The simple model system of the two-domain fusion protein investigated in this work consisted of a well-folded PDZ3 domain and an artificially designed small protein domain called Tryptophan Cage (TrpCage). Two fusion proteins with swapped domain order were designed to study their structural and functional features as well as their biophysical properties. The proteins composed of PDZ3 and TrpCage, both identical in amino acid sequence but different in composition (PDZ3-TrpCage, TrpCage-PDZ3), were studied using circualr dichroism (CD) spectrometry, analytical ultracentrifugation, and molecular dynamic simulations. The biophysical analysis uncovered different structural and denaturation properties of both studied proteins, revealing their different unfolding pathways and dynamics.


Assuntos
Domínios PDZ , Proteínas Recombinantes de Fusão , Triptofano , Sequência de Aminoácidos , Simulação de Dinâmica Molecular , Domínios PDZ/genética , Domínios PDZ/fisiologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Triptofano/química , Triptofano/genética
2.
Int J Mol Sci ; 21(12)2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32560560

RESUMO

Molecular determinants of the binding of various endogenous modulators to transient receptor potential (TRP) channels are crucial for the understanding of necessary cellular pathways, as well as new paths for rational drug designs. The aim of this study was to characterise interactions between the TRP cation channel subfamily melastatin member 4 (TRPM4) and endogenous intracellular modulators-calcium-binding proteins (calmodulin (CaM) and S100A1) and phosphatidylinositol 4, 5-bisphosphate (PIP2). We have found binding epitopes at the N- and C-termini of TRPM4 shared by CaM, S100A1 and PIP2. The binding affinities of short peptides representing the binding epitopes of N- and C-termini were measured by means of fluorescence anisotropy (FA). The importance of representative basic amino acids and their combinations from both peptides for the binding of endogenous TRPM4 modulators was proved using point alanine-scanning mutagenesis. In silico protein-protein docking of both peptides to CaM and S100A1 and extensive molecular dynamics (MD) simulations enabled the description of key stabilising interactions at the atomic level. Recently solved cryo-Electron Microscopy (EM) structures made it possible to put our findings into the context of the entire TRPM4 channel and to deduce how the binding of these endogenous modulators could allosterically affect the gating of TRPM4. Moreover, both identified binding epitopes seem to be ideally positioned to mediate the involvement of TRPM4 in higher-order hetero-multimeric complexes with important physiological functions.


Assuntos
Aquaporinas/metabolismo , Sítios de Ligação , Calmodulina/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas S100/metabolismo , Canais de Cátion TRPM/metabolismo , Sequência de Aminoácidos , Aquaporinas/química , Calmodulina/química , Humanos , Cinética , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Fragmentos de Peptídeos , Ligação Proteica , Conformação Proteica , Proteínas S100/química , Relação Estrutura-Atividade , Canais de Cátion TRPM/química
4.
Sci Rep ; 9(1): 17836, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31780667

RESUMO

Working at the border between innate and adaptive immunity, natural killer (NK) cells play a key role in the immune system by protecting healthy cells and by eliminating malignantly transformed, stressed or virally infected cells. NK cell recognition of a target cell is mediated by a receptor "zipper" consisting of various activating and inhibitory receptors, including C-type lectin-like receptors. Among this major group of receptors, two of the largest rodent receptor families are the NKR-P1 and the Clr receptor families. Although these families have been shown to encode receptor-ligand pairs involved in MHC-independent self-nonself discrimination and are a target for immune evasion by tumour cells and viruses, structural mechanisms of their mutual recognition remain less well characterized. Therefore, we developed a non-viral eukaryotic expression system based on transient transfection of suspension-adapted human embryonic kidney 293 cells to produce soluble native disulphide dimers of NK cell C-type lectin-like receptor ectodomains. The expression system was optimized using green fluorescent protein and secreted alkaline phosphatase, easily quantifiable markers of recombinant protein production. We describe an application of this approach to the recombinant protein production and characterization of native rat NKR-P1B and Clr-11 proteins suitable for further structural and functional studies.


Assuntos
Proteína Semelhante a Receptor de Calcitonina/genética , Subfamília B de Receptores Semelhantes a Lectina de Células NK/genética , Engenharia de Proteínas/métodos , Animais , Proteína Semelhante a Receptor de Calcitonina/química , Proteína Semelhante a Receptor de Calcitonina/metabolismo , Células HEK293 , Humanos , Subfamília B de Receptores Semelhantes a Lectina de Células NK/química , Subfamília B de Receptores Semelhantes a Lectina de Células NK/metabolismo , Domínios Proteicos , Multimerização Proteica , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
5.
Int J Mol Sci ; 20(18)2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31505788

RESUMO

Transient receptor potential (TRPs) channels are crucial downstream targets of calcium signalling cascades. They can be modulated either by calcium itself and/or by calcium-binding proteins (CBPs). Intracellular messengers usually interact with binding domains present at the most variable TRP regions-N- and C-cytoplasmic termini. Calmodulin (CaM) is a calcium-dependent cytosolic protein serving as a modulator of most transmembrane receptors. Although CaM-binding domains are widespread within intracellular parts of TRPs, no such binding domain has been characterised at the TRP melastatin member-the transient receptor potential melastatin 6 (TRPM6) channel. Another CBP, the S100 calcium-binding protein A1 (S100A1), is also known for its modulatory activities towards receptors. S100A1 commonly shares a CaM-binding domain. Here, we present the first identified CaM and S100A1 binding sites at the N-terminal of TRPM6. We have confirmed the L520-R535 N-terminal TRPM6 domain as a shared binding site for CaM and S100A1 using biophysical and molecular modelling methods. A specific domain of basic amino acid residues (R526/R531/K532/R535) present at this TRPM6 domain has been identified as crucial to maintain non-covalent interactions with the ligands. Our data unambiguously confirm that CaM and S100A1 share the same binding domain at the TRPM6 N-terminus although the ligand-binding mechanism is different.


Assuntos
Calmodulina/química , Modelos Moleculares , Proteínas S100/química , Canais de Cátion TRPM/química , Humanos , Domínios Proteicos
6.
Int J Mol Sci ; 20(3)2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30717183

RESUMO

We have investigated structural changes of peptides related to antimicrobial peptide Halictine-1 (HAL-1) induced by interaction with various membrane-mimicking models with the aim to identify a mechanism of the peptide mode of action and to find a correlation between changes of primary/secondary structure and biological activity. Modifications in the HAL-1 amino acid sequence at particular positions, causing an increase of amphipathicity (Arg/Lys exchange), restricted mobility (insertion of Pro) and consequent changes in antimicrobial and hemolytic activity, led to different behavior towards model membranes. Secondary structure changes induced by peptide-membrane interaction were studied by circular dichroism, infrared spectroscopy, and fluorescence spectroscopy. The experimental results were complemented by molecular dynamics calculations. An α-helical structure has been found to be necessary but not completely sufficient for the HAL-1 peptides antimicrobial action. The role of alternative conformations (such as ß-sheet, PPII or 310-helix) also seems to be important. A mechanism of the peptide mode of action probably involves formation of peptide assemblies (possibly membrane pores), which disrupt bacterial membrane and, consequently, allow membrane penetration.


Assuntos
Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Fosfatidilgliceróis/química , Sequência de Aminoácidos , Antibacterianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Cinética , Simulação de Dinâmica Molecular , Permeabilidade , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta
7.
FEBS J ; 285(3): 580-598, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29239122

RESUMO

ß-N-acetylhexosaminidase from the fungus Aspergillus oryzae is a secreted extracellular enzyme that cleaves chitobiose into constituent monosaccharides. It belongs to the GH 20 glycoside hydrolase family and consists of two N-glycosylated catalytic cores noncovalently associated with two 10-kDa O-glycosylated propeptides. We used X-ray diffraction and mass spectrometry to determine the structure of A. oryzae ß-N-acetylhexosaminidase isolated from its natural source. The three-dimensional structure determined and refined to a resolution of 2.3 Å revealed that this enzyme is active as a uniquely tight dimeric assembly further stabilized by N- and O-glycosylation. The propeptide from one subunit forms extensive noncovalent interactions with the catalytic core of the second subunit in the dimer, and this chain swap suggests the distinctive structural mechanism of the enzyme's activation. Unique structural features of ß-N-acetylhexosaminidase from A. oryzae define a very stable and robust framework suitable for biotechnological applications. The crystal structure reported here provides structural insights into the enzyme architecture as well as the detailed configuration of the active site. These insights can be applied to rational enzyme engineering. DATABASE: Structural data are available in the PDB database under the accession number 5OAR. ENZYME: ß-N-acetylhexosaminidase (EC 3.2.1.52).


Assuntos
Aspergillus oryzae/enzimologia , Proteínas Fúngicas/metabolismo , Proteína Ativadora de G(M2)/metabolismo , Gangliosídeo G(M2)/metabolismo , Modelos Moleculares , beta-N-Acetil-Hexosaminidases/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Sequência Conservada , Cristalografia por Raios X , Dimerização , Precursores Enzimáticos/química , Precursores Enzimáticos/metabolismo , Proteínas Fúngicas/química , Proteína Ativadora de G(M2)/química , Gangliosídeo G(M2)/química , Glicosilação , Ligantes , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , Estabilidade Proteica , Alinhamento de Sequência , Homologia Estrutural de Proteína , Especificidade por Substrato , beta-N-Acetil-Hexosaminidases/química
8.
Sci Rep ; 7(1): 15449, 2017 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-29133927

RESUMO

The protein sequences found in nature represent a tiny fraction of the potential sequences that could be constructed from the 20-amino-acid alphabet. To help define the properties that shaped proteins to stand out from the space of possible alternatives, we conducted a systematic computational and experimental exploration of random (unevolved) sequences in comparison with biological proteins. In our study, combinations of secondary structure, disorder, and aggregation predictions are accompanied by experimental characterization of selected proteins. We found that the overall secondary structure and physicochemical properties of random and biological sequences are very similar. Moreover, random sequences can be well-tolerated by living cells. Contrary to early hypotheses about the toxicity of random and disordered proteins, we found that random sequences with high disorder have low aggregation propensity (unlike random sequences with high structural content) and were particularly well-tolerated. This direct structure content/aggregation propensity dependence differentiates random and biological proteins. Our study indicates that while random sequences can be both structured and disordered, the properties of the latter make them better suited as progenitors (in both in vivo and in vitro settings) for further evolution of complex, soluble, three-dimensional scaffolds that can perform specific biochemical tasks.


Assuntos
Modelos Moleculares , Biblioteca de Peptídeos , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Sequência de Aminoácidos , Dicroísmo Circular , Biologia Computacional , Bases de Dados de Proteínas , Conjuntos de Dados como Assunto , Ressonância Magnética Nuclear Biomolecular , Agregados Proteicos , Dobramento de Proteína , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/toxicidade , Solubilidade
9.
J Mol Recognit ; 29(2): 70-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26400697

RESUMO

Ligand binding of neutral progesterone, basic propranolol, and acidic warfarin to human α1-acid glycoprotein (AGP) was investigated by Raman spectroscopy. The binding itself is characterized by a uniform conformational shift in which a tryptophan residue is involved. Slight differences corresponding to different contacts of the individual ligands inside the ß-barrel are described. Results are compared with in silico ligand docking into the available crystal structure of deglycosylated AGP using quantum/molecular mechanics. Calculated binding energies are -18.2, -14.5, and -11.5 kcal/mol for warfarin, propranolol, and progesterone, respectively. These calculations are consistent with Raman difference spectroscopy; nevertheless, minor discrepancies in the precise positions of the ligands point to structural differences between deglycosylated and native AGP. Thermal dynamics of AGP with/without bounded warfarin was followed by Raman spectroscopy in a temperature range of 10-95 °C and analyzed by principal component analysis. With increasing temperature, a slight decrease of α-helical content is observed that coincides with an increase in ß-sheet content. Above 45 °C, also ß-strands tend to unfold, and the observed decrease in ß-sheet coincides with an increase of ß-turns accompanied by a conformational shift of the nearby disulfide bridge from high-energy trans-gauche-trans to more relaxed gauche-gauche-trans. This major rearrangement in the vicinity of the bridge is not only characterized by unfolding of the ß-sheet but also by subsequent ligand release. Hereby, ligand binding alters the protein dynamics, and the more rigid protein-ligand complex shows an improved thermal stability, a finding that contributes to the reported chaperone-like function of AGP.


Assuntos
Orosomucoide/química , Orosomucoide/metabolismo , Progesterona/metabolismo , Propranolol/metabolismo , Varfarina/metabolismo , Sítios de Ligação , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Progesterona/química , Propranolol/química , Ligação Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Análise Espectral Raman , Termodinâmica , Triptofano/metabolismo , Varfarina/química
11.
Clin Chem Lab Med ; 52(5): 657-64, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24293450

RESUMO

BACKGROUND: The handling of cerebrospinal fluid (CSF) affects the biomarker quantification used to diagnose Alzheimer's disease (AD). Only specialized centers can test for AD markers. The precise timing and freezing is required to correctly measure these biomarkers. Therefore, the effects of CSF storage temperature and repeated freeze/thaw cycles on CSF stability were investigated. METHODS: Drop coating deposition Raman spectroscopy in combination with principal component analysis was used to analyze CSF and its dialyzed form (ELISA confirmed the removal of up to 80% of the AD markers). The advantage of this approach is that no prior knowledge of the biomarkers is necessary and that both the concentration and the protein structure of intact CSF are analyzed. RESULTS: Dialyzed CSF was stable for up to 5 h after its collection, while native CSF started to denature nearly immediately. Most of the unstable proteins were denatured within 24 h. The dialyzed CSF was not affected by freeze/thaw cycles, but the native CSF exhibited significant progressive changes, even after the first freezing. The mechanism as well as the resulting structures of the freeze-denatured proteins differed from those of the temporally denatured proteins, although both protein sets began with the same initial proteins. CONCLUSIONS: CSF must be processed immediately, within 5 h of collection. Flash cooling is recommended for freezing CSF, but any freeze/thaw cycle will affect the protein component of CSF.


Assuntos
Biomarcadores/líquido cefalorraquidiano , Congelamento , Análise Espectral Raman , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Humanos , Análise de Componente Principal , Proteínas tau/líquido cefalorraquidiano
12.
PLoS One ; 7(10): e46694, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23071614

RESUMO

Raman microscopy permits structural analysis of protein crystals in situ in hanging drops, allowing for comparison with Raman measurements in solution. Nevertheless, the two methods sometimes reveal subtle differences in structure that are often ascribed to the water layer surrounding the protein. The novel method of drop-coating deposition Raman spectropscopy (DCDR) exploits an intermediate phase that, although nominally "dry," has been shown to preserve protein structural features present in solution. The potential of this new approach to bridge the structural gap between proteins in solution and in crystals is explored here with extrinsic protein PsbP of photosystem II from Spinacia oleracea. In the high-resolution (1.98 Å) x-ray crystal structure of PsbP reported here, several segments of the protein chain are present but unresolved. Analysis of the three kinds of Raman spectra of PsbP suggests that most of the subtle differences can indeed be attributed to the water envelope, which is shown here to have a similar Raman intensity in glassy and crystal states. Using molecular dynamics simulations cross-validated by Raman solution data, two unresolved segments of the PsbP crystal structure were modeled as loops, and the amino terminus was inferred to contain an additional beta segment. The complete PsbP structure was compared with that of the PsbP-like protein CyanoP, which plays a more peripheral role in photosystem II function. The comparison suggests possible interaction surfaces of PsbP with higher-plant photosystem II. This work provides the first complete structural picture of this key protein, and it represents the first systematic comparison of Raman data from solution, glassy, and crystalline states of a protein.


Assuntos
Complexo de Proteína do Fotossistema II/química , Proteínas de Plantas/química , Spinacia oleracea/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Cristalografia por Raios X , Ligação de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Análise Espectral Raman
13.
J Struct Biol ; 175(3): 434-41, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21600988

RESUMO

Receptors belonging to NKR-P1 family and their specific Clr ligands form an alternative missing self recognition system critical in immunity against tumors and viruses, elimination of tumor cells subjected to genotoxic stress, activation of T cell dependent immune response, and hypertension. The three-dimensional structure of the extracellular domain of the mouse natural killer (NK) cell receptor mNKR-P1Aex has been determined by X-ray diffraction. The core of the C-type lectin domain (CTLD) is homologous to the other CTLD receptors whereas one quarter of the domain forms an extended loop interacting tightly with a neighboring loop in the crystal. This domain swapping mechanism results in a compact interaction interface. A second dimerization interface resembles the known arrangement of other CTLD NK receptors. A functional dimeric form of the receptor is suggested, with the loop, evolutionarily conserved within this family, proposed to participate in interactions with ligands.


Assuntos
Subfamília B de Receptores Semelhantes a Lectina de Células NK/química , Subfamília B de Receptores Semelhantes a Lectina de Células NK/metabolismo , Sequência de Aminoácidos , Animais , Células Matadoras Naturais/metabolismo , Camundongos , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Análise Espectral Raman , Difração de Raios X
14.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 67(Pt 4): 498-503, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21505251

RESUMO

Fungal ß-N-acetylhexosaminidases are enzymes that are used in the chemoenzymatic synthesis of biologically interesting oligosaccharides. The enzyme from Aspergillus oryzae was produced and purified from its natural source and crystallized using the hanging-drop vapour-diffusion method. Diffraction data from two crystal forms (primitive monoclinic and primitive tetragonal) were collected to resolutions of 3.2 and 2.4 Å, respectively. Electrophoretic and quantitative N-terminal protein-sequencing analyses confirmed that the crystals are formed by a complete biologically active enzyme consisting of a glycosylated catalytic unit and a noncovalently attached propeptide.


Assuntos
Aspergillus oryzae/enzimologia , beta-N-Acetil-Hexosaminidases/química , Domínio Catalítico , Cristalização , Cristalografia por Raios X , Glicosilação , beta-N-Acetil-Hexosaminidases/metabolismo
15.
J Mol Model ; 17(6): 1353-70, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20839018

RESUMO

Receptor proteins at the cell surface regulate the ability of natural killer cells to recognize and kill a variety of aberrant target cells. The structural features determining the function of natural killer receptor proteins 1 (NKR-P1s) are largely unknown. In the present work, refined homology models are generated for the C-type lectin-like extracellular domains of rat NKR-P1A and NKR-P1B, mouse NKR-P1A, NKR-P1C, NKR-P1F, and NKR-P1G, and human NKR-P1 receptors. Experimental data on secondary structure, tertiary interactions, and thermal transitions are acquired for four of the proteins using Raman and infrared spectroscopy. The experimental and modeling results are in agreement with respect to the overall structures of the NKR-P1 receptor domains, while suggesting functionally significant local differences among species and isoforms. Two sequence regions that are conserved in all analyzed NKR-P1 receptors do not correspond to conserved structural elements as might be expected, but are represented by loop regions, one of which is arranged differently in the constructed models. This region displays high flexibility but is anchored by conserved sequences, suggesting that its position relative to the rest of the domain might be variable. This loop may contribute to ligand-binding specificity via a coupled conformational transition.


Assuntos
Sequência Conservada , Subfamília B de Receptores Semelhantes a Lectina de Células NK/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Subfamília B de Receptores Semelhantes a Lectina de Células NK/classificação , Filogenia , Estrutura Terciária de Proteína , Ratos , Alinhamento de Sequência , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Homologia Estrutural de Proteína , Termodinâmica
16.
Toxicol Sci ; 117(2): 359-74, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20616208

RESUMO

Free radicals generated during peroxidase-catalyzed oxidation of two xenobiotics, carcinogenic Sudan I and an anticancer agent ellipticine, easily attack unmodified proteins but not glycoproteins. A significant inverse correlation between the extent of glycosylation of proteins and the degree of binding of Sudan I or ellipticine radicals to these proteins was observed, whereby the protection only occurs if oligosaccharides are covalently bound to the proteins. No influence of any other variables was found and further confirmed by experiments with proteins containing identical polypeptide chains differing only by the absence (ribonuclease A) or the presence (ribonuclease B) of a single oligosaccharide. The free radicals that are subject of this study did not react with the oligosaccharides because higher levels of the corresponding dimers, reaction products of the radicals, were found in presence of highly glycosylated proteins. The results indicate that carbohydrates protect polypeptides against modification by free radicals derived from toxic xenobiotics and provide passive shielding of the protein moiety.


Assuntos
Carcinógenos/metabolismo , Elipticinas/metabolismo , Naftóis/metabolismo , Desacopladores/metabolismo , Carcinógenos/toxicidade , Elipticinas/toxicidade , Radicais Livres/metabolismo , Glicosilação/efeitos dos fármacos , Humanos , Naftóis/toxicidade , Ressonância Magnética Nuclear Biomolecular , Oligossacarídeos/metabolismo , Oxirredução , Ribonuclease Pancreático/metabolismo , Ribonucleases/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Desacopladores/toxicidade
17.
J Med Chem ; 53(10): 4050-65, 2010 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-20433142

RESUMO

On the basis of the highly branched ovomucoid-type undecasaccharide that had been shown previously to be an endogenous ligand for CD69 leukocyte receptor, a systematic investigation of smaller oligosaccharide mimetics was performed based on linear and branched N-acetyl-d-hexosamine homooligomers prepared synthetically using hitherto unexplored reaction schemes. The systematic structure-activity studies revealed the tetrasaccharide GlcNAcbeta1-3(GlcNAcbeta1-4)(GlcNAcbeta1-6)GlcNAc (compound 52) and its alpha-benzyl derivative 49 as the best ligand for CD69 with IC(50) as high as 10(-9) M. This compound thus approaches the affinity of the classical high-affinity neoglycoprotein ligand GlcNAc(23)BSA. Compound 68, GlcNAc tetrasaccharide 52 dimerized through a hydrophilic flexible linker, turned out to be effective in activating CD69(+) lymphocytes. It also proved efficient in enhancing natural killing in vitro, decreasing the growth of tumors in vivo, and activating the CD69(+) tumor infiltrating lymphocytes examined ex vivo. This compound is thus a candidate for carbohydrate-based immunomodulators with promising antitumor potential.


Assuntos
Acetilglucosamina/análogos & derivados , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Antineoplásicos/farmacologia , Fatores Imunológicos/farmacologia , Células Matadoras Naturais/efeitos dos fármacos , Lectinas Tipo C/metabolismo , Oligossacarídeos/farmacologia , Acetilglucosamina/síntese química , Acetilglucosamina/química , Acetilglucosamina/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Sequência de Carboidratos , Linhagem Celular Tumoral , Dimerização , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Fatores Imunológicos/síntese química , Fatores Imunológicos/química , Técnicas In Vitro , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Ligantes , Ativação Linfocitária , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Mimetismo Molecular , Dados de Sequência Molecular , Subfamília B de Receptores Semelhantes a Lectina de Células NK/metabolismo , Oligossacarídeos/síntese química , Oligossacarídeos/química , Ratos , Proteínas Recombinantes/química
18.
Biochemistry ; 49(19): 4060-7, 2010 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-20369839

RESUMO

CD69 is an earliest lymphocyte activation antigen and a universal leukocyte triggering molecule expressed at sites of active immune response. The binding of GlcNAc to the dimeric human CD69 was followed by equilibrium dialysis, fluorescence titration, and NMR. Clear cooperation was observed in the high-affinity binding (K(d) = 4.0 x 10(-7) M) of the carbohydrate to two subunits of the dimeric CD69 (Hill coefficient 1.94). A control monosaccharide ManNAc was not bound by human CD69, and both monosaccharides had no effects on the structure of the receptor. However, a monomeric CD69 obtained by mutating Q93 and R134 at the dimer interface exhibited a much lower affinity for GlcNAc (K(d) = 1.3 x 10(-5) M) and no cooperativity (Hill coefficient 1.07). Perturbation of the dimer interface resulted in a severe impairment of the signaling ability of cellular CD69 when cross-linked with an antibody or with a bivalent high-affinity N-acetylhexosamine dimer-based ligand. The availability of stable preparations of soluble CD69 receptor with well-documented ligand binding properties will be beneficial for immunological experiments evaluating the role of this antigen in the complex environment of the immune system. Moreover, such preparations in combination with efficient ligand mimetics able to both activate CD69(+) lymphocytes and to block undesired hyperactivation caused by other cellular ligands will also become indispensable tools in explaining the exact role of the CD69 antigen in the interaction between the tumor cell and the effector natural killer lymphocyte.


Assuntos
Antígenos CD/química , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/química , Antígenos de Diferenciação de Linfócitos T/metabolismo , Hexosaminas/química , Lectinas Tipo C/química , Lectinas Tipo C/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Sítios de Ligação , Dimerização , Humanos , Células Jurkat , Ligantes , Modelos Moleculares , Relação Estrutura-Atividade
19.
Bioorg Med Chem ; 18(4): 1434-40, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20116265

RESUMO

We have recently identified a new class of high affinity ligands for CD69 leukocyte membrane receptor, carboxylated calixarenes. Of the three compounds investigated here, thiacalix[4]arene had the highest affinity for CD69 in direct binding assays, and proved to be the most specific inhibitor of CD69 identified so far in receptor precipitation and cellular activation experiments. Carboxylated calixarenes also proved effective at protection of CD69(high) lymphocytes from apoptosis triggered by a multivalent ligand or antibody. Thus, carboxylated calixarenes set a new paradigm for noncarbohydrate ligands for CD69 making them attractive for protection of killer cells in combined animal tumor therapies.


Assuntos
Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Apoptose , Calixarenos/metabolismo , Ácidos Carboxílicos/química , Lectinas Tipo C/metabolismo , Animais , Calixarenos/química , Humanos , Ligantes , Ratos
20.
J Mass Spectrom ; 44(11): 1571-8, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19551705

RESUMO

Proper formation of disulfide bonds in proteins is a prerequisite to their stability and function. Information on disulfide pattern may therefore serve as an indication of the proper folding of recombinant proteins, and can also be used in protein homology modeling for the purpose of structure refinement. Protein handling and digestion at basic pH leads to disulfide bond scrambling. That is why the samples are usually treated and digested at low pH where no scrambling occurs. Unfortunately, the specific proteases used in protein research are active at high pH values. Here, we present a complete sample handling protocol, which allows processing of disulfide containing proteins at basic pH. We modified the standard SDS gel electrophoresis and protein digestion conditions by the addition of an oxidative agent, cystamine. This modification prevented disulfide scrambling, which we otherwise observed in the samples handled according to the general protocol. Lysozyme from hen egg was used as a model protein for the development of the method. We then applied our protocol to human leukocyte antigen CD69, for which the disulfide bonding is known, but only for its monomeric form. In addition, the disulfide arrangement was then 'de novo' identified in the recombinant murine leukocyte receptor NKR-P1A and in the larger glycosylated proteins beta-N-acetylhexosaminidases from Aspergillus oryzae and Penicillium oxalicum.


Assuntos
Dissulfetos/química , Eletroforese em Gel de Poliacrilamida/métodos , Espectrometria de Massas/métodos , Proteínas/química , Sequência de Aminoácidos , Animais , Humanos , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...