Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Insects ; 14(9)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37754717

RESUMO

Nevrorthidae, the group of dragon lacewings, has often been considered a relic group. Today, dragon lacewings show a scattered distribution, with some species occurring in southern Europe, Japan, Australia, and one in China. The idea that this distribution is only a remnant of an originally larger distribution is further supported by fossils of the group preserved in ambers from the Baltic region (Eocene, ca. 35-40 MaBP) and Myanmar (Kachin amber, Cretaceous, ca. 100 MaBP). Larvae of the group are slender and elongated and live mostly in water. Yet, larvae are in fact very rare. So far, only slightly more than 30 larval specimens, counting all extant and fossil larvae, have been depicted in the literature. Here, we report numerous additional specimens, including extant larvae, but also fossil ones from Baltic and Kachin amber. Together with the already known ones, this sums up to over 100 specimens. We analysed quantitative aspects of the morphology of these larvae and compared them over time to identify changes in the diversity. Despite the enriched sample size, the data set is still unbalanced, with, for example, newly hatched larvae (several dozen specimens) only known from the Eocene. We expected little change in larval morphology over geological time, as indicated by earlier studies. However, on the contrary, we recognised morphologies present in fossils that are now extinct. This result is similar to those for other groups of lacewings which have a relic distribution today, as these have also suffered a loss in diversity in larval forms.

2.
Insects ; 13(4)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35447779

RESUMO

Aphidlions are larvae of certain lacewings (Neuroptera), and more precisely larvae of the groups Chrysopidae, green lacewings, and Hemerobiidae, brown lacewings. The name 'aphidlion' originates from their ecological function as specialised predators of aphids. Accordingly, they also play an economic role as biological pest control. Aphidlions have, mostly, elongated spindle-shaped bodies, and similarly to most lacewing larvae they are equipped with a pair of venom-injecting stylets. Fossils interpreted as aphidlions are known to be preserved in amber from the Cretaceous (130 and 100 million years ago), the Eocene (about 35 million years ago) and the Miocene (about 15 million years ago) ages. In this study, new aphidlion-like larvae are reported from Cretaceous amber from Myanmar (about 100 million years old) and Eocene Baltic amber. The shapes of head and stylets were compared between the different time slices. With the newly described fossils and specimens from the literature, a total of 361 specimens could be included in the analysis: 70 specimens from the Cretaceous, 5 from the Eocene, 3 from the Miocene, 188 extant larvae of Chrysopidae, and 95 extant larvae of Hemerobiidae. The results indicate that the diversity of head shapes remains largely unchanged over time, yet there is a certain increase in the diversity of head shapes in the larvae of Hemerobiidae. In certain other groups of Neuroptera, a distinct decrease in the diversity of head shapes in larval stages was observed.

3.
Insects ; 12(10)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34680629

RESUMO

Neuroptera, the group of lacewings, comprises only about 6000 species in the modern fauna, but is generally assumed to have been more diverse and important in the past. A major factor of the modern-day ecological diversity of the group, and supposedly in the past as well, is represented by the highly specialised larval forms of lacewings. Quantitative analyses of the morphology of larvae revealed a loss of morphological diversity in several lineages. Here we explored the diversity of the larvae of mantis lacewings (Mantispidae), lance lacewings (Osmylidae), beaded lacewings (Berothidae and Rhachiberothidae, the latter potentially an ingroup of Berothidae), and pleasing lacewings (Dilaridae), as well as fossil larvae, preserved in amber, resembling these. We used shape analysis of the head capsule and stylets (pair of conjoined jaws) as a basis due to the high availability of this body region in extant and fossil specimens and the ecological importance of this region. The analysis revealed a rather constant morphological diversity in Berothidae. Mantispidae appears to have lost certain forms of larvae, but has seen a drastic increase of larval diversity after the Cretaceous; this is in contrast to a significant decrease in diversity in adult forms.

4.
Fungal Biol ; 123(11): 804-810, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31627856

RESUMO

Three new fossils of saprotrophic fungi are presented and described from Baltic amber, dated to Eocene epoch (Paleogene, upper to mid-Eocene). All belong to Ascomycota and are represented by hyphae as well as asexual reproduction structures allowing to assign them to present genera, respectively Periconia, Penicillium and Scopulariopsis. These material provide both the first and the oldest known fossil record of the mentioned taxa, making these data valuable for the knowledge about the evolutionary history of the Ascomycota.


Assuntos
Âmbar , Ascomicetos/classificação , Ascomicetos/isolamento & purificação , Fósseis/microbiologia , Ascomicetos/citologia , Hifas/citologia , Microscopia , Polônia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA