Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Orthop Res ; 42(1): 123-133, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37337074

RESUMO

This study's objective was to investigate how contractile strength loss associated with a volumetric muscle loss (VML) injury affects the adjacent tibial bone structural and functional properties in male C57BL/6J mice. Mice were randomized into one of two experimental groups: VML-injured mice that were injured at age 12 weeks and aged to 20 weeks (8 weeks postinjury, VML) and 20-week-old age-matched uninjured mice (Uninjured-20). Tibial bone strength, mid-diaphysis cortical geometry, intrinsic material properties, and metaphyseal trabecular bone structure were assessed by three-point bending and microcomputed tomography (µCT). The plantar flexor muscle group (gastrocnemius, soleus, plantaris) was analyzed for its functional capacities, that is, peak-isometric torque and peak-isokinetic power. VML-injured limbs had 25% less peak-isometric torque and 31% less peak-isokinetic power compared to those of Uninjured-20 mice (p < 0.001). Ultimate load, but not stiffness, was significantly less (10%) in tibias of VML-injured limbs compared to those from Uninjured-20 (p = 0.014). µCT analyses showed cortical bone thickness was 6% less in tibias of VML-injured limbs compared to Uninjured-20 (p = 0.001). Importantly, tibial bone cross-section moment of inertia, the primary determinant of bone ultimate load, was 16% smaller in bones of VML-injured limbs compared to bones from Uninjured-20 (p = 0.046). Metaphyseal trabecular bone structure was also altered up to 23% in tibias of VML-injured limbs (p < 0.010). These changes in tibial bone structure and function after a VML injury occur during a natural maturation phase between the age of 12 and 20 weeks, as evidenced by Uninjured-20 mice having greater tibial bone size and strength compared to uninjured-aged 12-week mice.


Assuntos
Músculo Esquelético , Tíbia , Camundongos , Masculino , Animais , Tíbia/diagnóstico por imagem , Microtomografia por Raio-X , Camundongos Endogâmicos C57BL , Músculo Esquelético/fisiologia , Osso e Ossos , Força Muscular/fisiologia
2.
Exp Neurol ; 365: 114431, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37142114

RESUMO

An often-overlooked component of traumatic skeletal muscle injuries is the impact on the nervous system and resultant innervation of the affected muscles. Recent work in a rodent model of volumetric muscle loss (VML) injury demonstrated a progressive, secondary loss of neuromuscular junction (NMJ) innervation, supporting a role of NMJ dysregulation in chronic functional deficits. Terminal Schwann cells (tSCs) are known to be vital for the maintenance of NMJ structure and function, in addition to guiding repair and regeneration after injury. However, the tSC response to a traumatic muscle injury such as VML is not known. Thus, a study was conducted to investigate the effect of VML on tSC morphological characteristics and neurotrophic signaling proteins in adult male Lewis rats that underwent VML injury to the tibialis anterior muscle using a temporal design with outcome assessments at 3, 7, 14, 21, and 48 days post-injury. The following salient observations were made; first, although there is a loss of innervation over time, the number of tSCs per NMJ increases, significantly so at 48 days post-injury compared to control. The degree of NMJ fragmentation was positively correlated with tSC number after injury. Moreover, neurotrophic factors such as NRG1 and BDNF are elevated after injury through at least 48 days. These results were unanticipated and in contrast to neurodegenerative disease models, in which there is a reduction in tSC number that precedes denervation. However, we found that while there are more tSCs per NMJ after injury, they cover a significantly smaller percent of the post-synaptic endplate area compared to control. These findings support a sustained increase in neurotrophic activity and tSC number after VML, which is a maladaptive response occurring in parallel to other aspects of the VML injury, such as over-accumulation of collagen and aberrant inflammatory signaling.


Assuntos
Doenças Neurodegenerativas , Ratos , Animais , Masculino , Doenças Neurodegenerativas/metabolismo , Ratos Endogâmicos Lew , Junção Neuromuscular/metabolismo , Células de Schwann/metabolismo , Músculo Esquelético/metabolismo
3.
Am J Phys Med Rehabil ; 102(10): 873-878, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36897794

RESUMO

OBJECTIVE: Spasticity in children with cerebral palsy can be managed by a spectrum of approaches, from conservative therapy, to temporary botulinum toxin A injections, to permanent transection of sensory nerves with a selective dorsal rhizotomy. This pilot study investigated whether these three tone management approaches are associated with histological and biochemical properties of the medial gastrocnemius. DESIGN: A convenience sample of children with cerebral palsy undergoing gastrocnemius lengthening surgery was enrolled. Intraoperative biopsies were obtained from three individuals (one each: minimal tone treatment; frequent gastrocnemius botulinum toxin A injections; previous selective dorsal rhizotomy). All individuals had plantarflexor contractures, weakness, and impaired motor control before the biopsy. RESULTS: Differences between participants were observed for muscle fiber cross-sectional area, fiber type, lipid content, satellite cell density, and centrally located nuclei. The most pronounced difference was the abundance of centrally located nuclei in the botulinum toxin A participants (52%) compared with the others (3-5%). Capillary density, collagen area and content, and muscle protein content were similar across participants. CONCLUSIONS: Several muscle properties seemed to deviate from reported norms, although age- and muscle-specific references are sparse. Prospective studies are necessary to distinguish cause and effect and to refine the risks and benefits of these treatment options.


Assuntos
Toxinas Botulínicas Tipo A , Paralisia Cerebral , Fármacos Neuromusculares , Criança , Humanos , Toxinas Botulínicas Tipo A/uso terapêutico , Projetos Piloto , Fármacos Neuromusculares/uso terapêutico , Estudos Prospectivos , Paralisia Cerebral/patologia , Resultado do Tratamento , Músculo Esquelético/patologia , Espasticidade Muscular/tratamento farmacológico , Espasticidade Muscular/etiologia
5.
Exp Physiol ; 108(1): 76-89, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36116106

RESUMO

NEW FINDINGS: What is the central question of this study? First, how does physical rehabilitation influence recovery from traumatic muscle injury? Second, how does physical activity impact the rehabilitation response for skeletal muscle function and whole-body metabolism? What is the main finding and its importance? The most salient findings were that rehabilitation impaired muscle function and range of motion, while restricting activity mitigated some negative effects but also impacted whole-body metabolism. These data suggest that first, work must continue to explore treatment parameters, including modality, time, type, duration and intensity, to find the best rehabilitation approaches for volumetric muscle loss injuries; and second, restricting activity acutely might enhance rehabilitation response, but whole-body co-morbidities should continue to be considered. ABSTRACT: Volumetric muscle loss (VML) injury occurs when a substantial volume of muscle is lost by surgical removal or trauma, resulting in an irrecoverable deficit in muscle function. Recently, it was suggested that VML impacts whole-body and muscle-specific metabolism, which might contribute to the inability of the muscle to respond to treatments such as physical rehabilitation. The aim of this work was to understand the complex relationship between physical activity and the response to rehabilitation after VML in an animal model, evaluating the rehabilitation response by measurement of muscle function and whole-body metabolism. Adult male mice (n = 24) underwent a multi-muscle, full-thickness VML injury to the gastrocnemius, soleus and plantaris muscles and were randomized into one of three groups: (1) untreated; (2) rehabilitation (i.e., combined electrical stimulation and range of motion, twice per week, beginning 72 h post-injury, for ∼8 weeks); or (3) rehabilitation and restriction of physical activity. There was a lack of positive adaption associated with electrical stimulation and range of motion intervention alone; however, maximal isometric torque of the posterior muscle group was greater in mice receiving treatment with activity restriction (P = 0.008). Physical activity and whole-body metabolism were measured ∼6 weeks post-injury; metabolic rate decreased (P = 0.001) and respiratory exchange ratio increased (P = 0.022) with activity restriction. Therefore, restricting physical activity might enhance an intervention delivered to the injured muscle group but impair whole-body metabolism. It is possible that restricting activity is important initially post-injury to protect the muscle from excess demand. A gradual increase in activity throughout the course of treatment might optimize muscle function and whole-body metabolism.


Assuntos
Doenças Musculares , Regeneração , Masculino , Camundongos , Animais , Regeneração/fisiologia , Músculo Esquelético/fisiologia , Amplitude de Movimento Articular , Modelos Animais de Doenças , Estimulação Elétrica
6.
Connect Tissue Res ; 63(2): 124-137, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33535825

RESUMO

PURPOSE/AIM: Volumetric muscle loss (VML) is a devastating orthopedic injury resulting in chronic persistent functional deficits, loss of joint range of motion, pathologic fibrotic deposition and lifelong disability. However, there is only limited mechanistic understanding of VML-induced fibrosis. Herein we examined the temporal changes in the fibrotic deposition at 3, 7, 14, 28, and 48 days post-VML injury. MATERIALS AND METHODS: Adult male Lewis rats (n = 39) underwent a full thickness ~20% (~85 mg) VML injury to the tibialis anterior (TA) muscle unilaterally, the contralateral TA muscle served as the control group. All TA muscles were harvested for biochemical and histologic evaluation. RESULTS: The ratio of collagen I/III was decreased at 3, 7, and 14 days post-VML, but significantly increased at 48 days. Decorin content followed an opposite trend, significantly increasing by day 3 before dropping to below control levels by 48 days. Histological evaluation of the defect area indicates a shift from loosely packed collagen at early time points post-VML, to a densely packed fibrotic scar by 48 days. CONCLUSIONS: The shift from early wound healing efforts to a fibrotic scar with densely packed collagen within the skeletal muscle occurs around 21 days after VML injury through dogmatic synchronous reduction of collagen III and increase in collagen I. Thus, there appears to be an early window for therapeutic intervention to prevent pathologic fibrous tissue formation, potentially by targeting CCN2/CTGF or using decorin as a therapeutic.


Assuntos
Doenças Musculares , Regeneração , Animais , Cicatriz/patologia , Colágeno , Colágeno Tipo I , Decorina , Matriz Extracelular/patologia , Fibrose , Masculino , Músculo Esquelético/patologia , Doenças Musculares/patologia , Ratos , Ratos Endogâmicos Lew , Regeneração/fisiologia
7.
J Appl Physiol (1985) ; 130(5): 1614-1625, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33830817

RESUMO

Volumetric muscle loss (VML) is the traumatic loss of muscle tissue that results in long-term functional impairments. Despite the loss of myofibers, there remains an unexplained significant decline in muscle function. VML injury likely extends beyond the defect area, causing negative secondary outcomes to the neuromuscular system, including the neuromuscular junctions (NMJs), yet the extent to which VML induces denervation is unclear. This study systematically examined NMJs surrounding the VML injury, hypothesizing that the sequela of VML includes denervation. The VML injury removed ∼20% of the tibialis anterior (TA) muscle in adult male inbred Lewis rats (n = 43), the noninjured leg served as an intra-animal control. Muscles were harvested up to 48 days post-VML. Synaptic terminals were identified immunohistochemically, and quantitative confocal microscopy evaluated 2,613 individual NMJ. Significant denervation was apparent by 21 and 48 days post-VML. Initially, denervation increased ∼10% within 3 days of injury; with time, denervation further increased to ∼22% and 32% by 21 and 48 days post-VML, respectively, suggesting significant secondary denervation. The appearance of terminal axon sprouting and polyinnervation were observed as early as 7 days post-VML, increasing in number and complexity throughout 48 days. There was no evidence of VML-induced NMJ size alteration, which may be beneficial for interventions aimed at restoring muscle function. This work recognizes VML-induced secondary denervation and poor remodeling of the NMJ as part of the sequela of VML injury; moreover, secondary denervation is a possible contributing factor to the chronic functional impairments and potentially an overlooked treatment target.NEW & NOTEWORTHY This work advances our understanding of the pathophysiologic complexity of volumetric muscle loss injury. Specifically, we identified secondary denervation in the muscle remaining after volumetric muscle loss injuries as a novel aspect of the injury sequela. Denervation increased chronically, in parallel with the appearance of irregular morphological characteristics and destabilization of the neuromuscular junction, which is expected to further confound chronic functional impairments.


Assuntos
Doenças Musculares , Animais , Denervação , Modelos Animais de Doenças , Masculino , Músculo Esquelético , Ratos , Ratos Endogâmicos Lew
8.
ASN Neuro ; 5(1): e00106, 2012 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-23298182

RESUMO

Genetic and environmental factors are both likely to contribute to neurodevelopmental disorders, including ASDs (autism spectrum disorders). In this study, we examined the combinatorial effect of two factors thought to be involved in autism--reduction in the expression of the extracellular matrix protein reelin and prenatal exposure to an organophosphate pesticide, CPO (chlorpyrifos oxon). Mice with reduced reelin expression or prenatal exposure to CPO exhibited subtle changes in ultrasound vocalization, open field behaviour, social interaction and repetitive behaviour. Paradoxically, mice exposed to both variables often exhibited a mitigation of abnormal behaviours, rather than increased behavioural abnormalities as expected. We identified specific differences in males and females in response to both of these variables. In addition to behavioural abnormalities, we identified anatomical alterations in the olfactory bulb, piriform cortex, hippocampus and cerebellum. As with our behavioural studies, anatomical alterations appeared to be ameliorated in the presence of both variables. While these observations support an interaction between loss of reelin expression and CPO exposure, our results suggest a complexity to this interaction beyond an additive effect of individual phenotypes.


Assuntos
Comportamento Animal/efeitos dos fármacos , Sintomas Comportamentais/induzido quimicamente , Encéfalo/efeitos dos fármacos , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Organofosfatos/toxicidade , Serina Endopeptidases/metabolismo , Acetilcolinesterase/metabolismo , Fatores Etários , Análise de Variância , Animais , Animais Recém-Nascidos , Moléculas de Adesão Celular Neuronais/genética , Colorimetria , Sistemas de Liberação de Medicamentos , Embrião de Mamíferos , Comportamento Exploratório/efeitos dos fármacos , Proteínas da Matriz Extracelular/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Relações Interpessoais , Masculino , Camundongos , Camundongos Mutantes Neurológicos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , RNA Mensageiro/metabolismo , Proteína Reelina , Serina Endopeptidases/genética , Vocalização Animal/efeitos dos fármacos , beta-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...