Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Geod ; 93(11): 2263-2273, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31920223

RESUMO

NASA maintains and operates a global network of Very Long Baseline Interferometry (VLBI), Satellite Laser Ranging (SLR), and Global Navigation Satellite System (GNSS) ground stations as part of the NASA Space Geodesy Program. The NASA Space Geodesy Network (NSGN) provides the geodetic products that support Earth observations and the related science requirements as outlined by the US National Research Council (NRC 2010, 2018). The Global Geodetic Observing System (GGOS) and the NRC have set an ambitious goal of improving the Terrestrial Reference Frame (TRF) to have an accuracy of 1 millimeter and stability of 0.1 millimeters per year, an order of magnitude beyond current capabilities. NASA and its partners within GGOS are addressing this challenge by planning and implementing modern geodetic stations co-located at existing and new sites around the world. In 2013, NASA demonstrated the performance of its next-generation systems at the prototype next-generation core site at NASA's Goddard Geophysical and Astronomical Observatory in Greenbelt, Maryland. Implementation of a new broadband VLBI station in Hawaii was completed in 2016. NASA is currently implementing new VLBI and SLR stations in Texas and is planning the replacement of its other aging domestic and international legacy stations. In this article, we describe critical gaps in the current global network and discuss how the new NSGN will expand the global geodetic coverage and ultimately improve the geodetic products. We also describe the characteristics of a modern NSGN site and the capabilities of the next-generation NASA SLR and VLBI systems. Finally, we outline the plans for efficiently operating the NSGN by centralizing and automating the operations of the new geodetic stations.

2.
Appl Opt ; 57(27): 7702-7713, 2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30462032

RESUMO

The Lunar Orbiter Laser Altimeter (LOLA) aboard the Lunar Reconnaissance Orbiter (LRO) has collected nearly seven billion measurements of surface height on the Moon with an absolute accuracy of ∼1 m and a precision of ∼10 cm. Converting time-of-flight laser altimeter measurements to topographic elevations requires accurate knowledge of the laser pointing with respect to the spacecraft body-fixed coordinate system. To that end, we have utilized altimetric crossovers from LOLA, as well as bidirectional observations of the LOLA laser and receiver boresight via an Earth-based laser tracking ground station. Based on a sample of ∼780,000 globally distributed crossovers from the circular-orbit phase of LRO's mission (∼27 months), we derive corrections to the LOLA laser boresight. These corrections improve the cross-track and along-track agreement of the crossovers by 24% and 33%, respectively, yielding RMS residuals of ∼10 m. Since early in the LRO mission, the bidirectional laser tracking experiments have confirmed a pointing anomaly when the LOLA instrument is facing toward deep space or the night side of the Moon and have allowed the reconstruction of the laser far-field pattern and receiver telescope pointing. By conducting such experiments shortly after launch and nearly eight years later, we have directly measured changes in the laser characteristics and obtained critical data to understand the laser behavior and refine the instrument pointing model. The methods and results presented here are also relevant to the design, fabrication, and operation of future planetary laser altimeters and their long-term behavior in the space environment.

3.
J Geod ; 93: 2249-2262, 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31920222

RESUMO

For over 40 years, NASA's global network of satellite laser ranging (SLR) stations has provided a significant percentage of the global orbital data used to define the International Terrestrial Reference Frame (ITRF). The current NASA legacy network is reaching its end-of-life and a new generation of systems must be ready to take its place. Scientific demands of sub-millimeter precision ranging and the ever-increasing number of tracking targets give aggressive performance requirements to this new generation of systems. Using lessons learned from the legacy systems and the successful development of a prototype station, a new network of SLR stations, called the Space Geodesy Satellite Laser Ranging (SGSLR) systems, is being developed. These will be the state-of-the-art SLR component of NASA's Space Geodesy Project (SGP). Each of SGSLR's nine subsystems has been designed to produce a robust, kilohertz laser ranging system with 24/7 operational capability and with minimal human intervention. SGSLR's data must support the aggressive goals of the Global Geodetic Observing System (GGOS), which are 1 millimeter (mm) position accuracy and 0.1 mm per year stability of the ITRF. This paper will describe the major requirements and accompanying design of the new SGSLR systems, how the systems will be tested, and the expected system performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA