Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 53(21): 5336-40, 2014 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-24719231

RESUMO

The oxidation of CO is the archetypal heterogeneous catalytic reaction and plays a central role in the advancement of fundamental studies, the control of automobile emissions, and industrial oxidation reactions. Copper-based catalysts were the first catalysts that were reported to enable the oxidation of CO at room temperature, but a lack of stability at the elevated reaction temperatures that are used in automobile catalytic converters, in particular the loss of the most reactive Cu(+) cations, leads to their deactivation. Using a combined experimental and theoretical approach, it is shown how the incorporation of titanium cations in a Cu2O film leads to the formation of a stable mixed-metal oxide with a Cu(+) terminated surface that is highly active for CO oxidation.

2.
J Chem Phys ; 139(4): 044712, 2013 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-23902008

RESUMO

The interaction of atomic hydrogen with the Cu(111) surface was studied by a combined experimental-theoretical approach, using infrared reflection absorption spectroscopy, temperature programmed desorption, and density functional theory (DFT). Adsorption of atomic hydrogen at 160 K is characterized by an anti-absorption mode at 754 cm(-1) and a broadband absorption in the IRRA spectra, related to adsorption of hydrogen on three-fold hollow surface sites and sub-surface sites, and the appearance of a sharp vibrational band at 1151 cm(-1) at high coverage, which is also associated with hydrogen adsorption on the surface. Annealing the hydrogen covered surface up to 200 K results in the disappearance of this vibrational band. Thermal desorption is characterized by a single feature at ∼295 K, with the leading edge at ∼250 K. The disappearance of the sharp Cu-H vibrational band suggests that with increasing temperature the surface hydrogen migrates to sub-surface sites prior to desorption from the surface. The presence of sub-surface hydrogen after annealing to 200 K is further demonstrated by using CO as a surface probe. Changes in the Cu-H vibration intensity are observed when cooling the adsorbed hydrogen at 180 K to 110 K, implying the migration of hydrogen. DFT calculations show that the most stable position for hydrogen adsorption on Cu(111) is on hollow surface sites, but that hydrogen can be trapped in the second sub-surface layer.

3.
J Am Chem Soc ; 130(51): 17272-3, 2008 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-19049274

RESUMO

Using STM, infrared absorption reflection spectroscopy experiments and density functional calculations we show that low temperature adsorption of CO on gold surfaces modified by vacancy islands leads to morphological changes and the formation of nanosized Au particles. These results demonstrate a dynamic response of a surface during adsorption with consequences for the surface reactivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...