Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Ecotechnol ; 21: 100392, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38434492

RESUMO

Activated carbon is employed for the adsorption of organic micropollutants (OMPs) from water, typically present in concentrations ranging from ng L-1 to µg L-1. However, the efficacy of OMP removal is considerably deteriorated due to competitive adsorption from background dissolved organic matter (DOM), present at substantially higher concentrations in mg L-1. Interpreting the characteristics of competitive DOM is crucial in predicting OMP adsorption efficiencies across diverse natural waters. Molecular weight (MW), aromaticity, and polarity influence DOM competitiveness. Although the aromaticity-related metrics, such as UV254, of low MW DOM were proposed to correlate with DOM competitiveness, the method suffers from limitations in understanding the interplay of polarity and aromaticity in determining DOM competitiveness. Here, we elucidate the intricate influence of aromaticity and polarity in low MW DOM competition, spanning from a fraction level to a compound level, by employing direct sample injection liquid chromatography coupled with ultrahigh-resolution Fourier-transform ion cyclotron resonance mass spectrometry. Anion exchange resin pre-treatment eliminated 93% of UV254-active DOM, predominantly aromatic and polar DOM, and only minimally alleviated DOM competition. Molecular characterization revealed that nonpolar molecular formulas (constituting 26% PAC-adsorbable DOM) with medium aromaticity contributed more to the DOM competitiveness. Isomer-level analysis indicated that the competitiveness of highly aromatic LMW DOM compounds was strongly counterbalanced by increased polarity. Strong aromaticity-derived π-π interaction cannot facilitate the competitive adsorption of hydrophilic DOM compounds. Our results underscore the constraints of depending solely on aromaticity-based approaches as the exclusive interpretive measure for DOM competitiveness. In a broader context, this study demonstrates an effect-oriented DOM analysis, elucidating counterbalancing interactions of DOM molecular properties from fraction to compound level.

2.
EFSA J ; 21(8): e08194, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37644961

RESUMO

This guidance document provides a tiered framework for risk assessors and facilitates risk managers in making decisions concerning the approval of active substances (AS) that are chemicals in plant protection products (PPPs) and biocidal products, and authorisation of the products. Based on the approaches presented in this document, a conclusion can be drawn on the impact of water treatment processes on residues of the AS or its metabolites in surface water and/or groundwater abstracted for the production of drinking water, i.e. the formation of transformation products (TPs). This guidance enables the identification of actual public health concerns from exposure to harmful compounds generated during the processing of water for the production of drinking water, and it focuses on water treatment methods commonly used in the European Union (EU). The tiered framework determines whether residues from PPP use or residues from biocidal product use can be present in water at water abstraction locations. Approaches, including experimental methods, are described that can be used to assess whether harmful TPs may form during water treatment and, if so, how to assess the impact of exposure to these water treatment TPs (tTPs) and other residues including environmental TPs (eTPs) on human and domesticated animal health through the consumption of TPs via drinking water. The types of studies or information that would be required are described while avoiding vertebrate testing as much as possible. The framework integrates the use of weight-of-evidence and, when possible alternative (new approach) methods to avoid as far as possible the need for additional testing.

3.
Water Res ; 221: 118790, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35780766

RESUMO

Microplastics are ubiquitous and consequently enter drinking water treatment plants. Knowledge of the microplastic fate in drinking water production is still very limited, although explorative studies have shown tap water contains low contents of microplastics. In this study, we measure microplastic concentrations in drinking water sources and assess the effectiveness of various drinking water treatment facilities to reduce the microplastic concentrations in water to gain insight into the fate of microplastics. Two analytical techniques, laser direct infrared spectroscopy (LDIR) and optical microscopy, have been applied to cover the particle size range from 20 µm to 5 mm. In total five different drinking water sites were investigated using four different types of raw water (groundwater, surface water, dune filtrate and riverbank filtrate) for drinking water production. This research shows that drinking water treatment removes the majority of microplastics and that concentration of microplastics larger than 20 µm in tap water is less than 2 microplastics particles per litre. Between the different raw water sources it is found that groundwater had by far the lowest microplastics concentrations (< 1.000 microplastics per m3) and the highest concentration was found in riverine water, up to 460.000 particles per m3, specifically in the Lek Canal () (a canal connected to the river Rhine). On average the most abundant plastics found are polyamide (PA, 33%), polyethylene terephthalate (PET, 15%), rubbers (10%), polyethylene (PE, 10%) and chlorinated polyethylene (CPE, 7%). This study also showed that natural treatment steps, such as dune infiltration and sedimentation, remove microplastics effectively. However, this may introduce an adverse effect where microplastics potentially accumulate in the sediment and environment.


Assuntos
Água Potável , Poluentes Químicos da Água , Monitoramento Ambiental , Microplásticos , Plásticos , Polietileno/análise , Rios , Poluentes Químicos da Água/análise
4.
Chemosphere ; 214: 801-811, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30296768

RESUMO

Transformation products (TPs) can be formed from organic micropollutants in the water cycle through both biological and technological processes. Despite the TPs' potentially altered toxicity compared to their parent compounds, transformation processes are not routinely monitored, and in particular those induced by drinking water treatment remain elusive. This lack of information is mainly due to the technical challenges in analyzing TPs, which are often unknown compounds occurring in low concentrations. Their analysis requires sophisticated analytical techniques such as non-target screening (NTS) based on high-resolution tandem mass spectrometry (HRMS/MS) methods combined with novel data analysis approaches. Here, we addressed the challenges of TP analysis and the scarcity of TP research concerning studies in drinking water. We performed lab-scale experiments to monitor TP formation of three organic micropollutants prevalent in drinking water sources, i.e. carbamazepine, clofibric acid and metolachlor, during rapid sand filtration and ozonation, two readily applied biotic and abiotic drinking water treatments, respectively. To facilitate TP identification in the NTS data, halogenated and/or isotopically labeled parent compounds were used, revealing potential TPs through their isotopic patterns. The experimental results showed that degradation of the parent compounds and TP formation were treatment and compound specific. In silico TP prediction and literature mining enabled suspect screening of the non-target data and thereby significantly enhanced TP identification. Overall, the developed workflow enables an efficient and more comprehensive assessment of drinking water quality changes during water treatment.


Assuntos
Água Potável/química , Filtração/métodos , Espectrometria de Massas em Tandem/métodos , Poluentes Químicos da Água/química , Purificação da Água/métodos , Qualidade da Água/normas , Água Potável/análise , Poluentes Químicos da Água/análise
5.
Water Res ; 138: 47-55, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29573628

RESUMO

Ozonation, sorption to granular activated carbon and aerobic degradation were compared as potential treatment methods for removal of dissolved organic carbon (DOC) fractions and selected organic compounds from shale gas flowback water after pre-treatment in dissolved air flotation unit. Flowback water was characterised by high chemical oxygen demand and DOC. Low molecular weight (LMW) acids and neutral compounds were the most abundant organic fractions, corresponding to 47% and 35% of DOC respectively. Ozonation did not change distribution of organic carbon fractions and concentrations of detected individual organic compounds significantly. Sorption to activated carbon targeted removal of individual organic compounds with molecular weight >115 Da, whereas LMW compounds remained largely unaffected. Aerobic degradation was responsible for removal of LMW compounds and partial ammonium removal, whereas formation of intermediates with molecular weight of 200-350 Da was observed. Combination of aerobic degradation for LMW organics removal with adsorption to activated carbon for removal of non-biodegradable organics is proposed to be implemented between pre-treatment (dissolved air floatation) and desalination (thermal or membrane desalination) steps.


Assuntos
Gás Natural , Compostos Orgânicos/química , Compostos Orgânicos/metabolismo , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo , Adsorção , Carbono/química , Carvão Vegetal/química , Ozônio/química , Águas Residuárias/química
6.
Adv Exp Med Biol ; 996: 241-253, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29124705

RESUMO

At first it seemed that UV processes for disinfection and advanced oxidation were "harmless", as they didn't involve the addition of "dangerous" chemicals nor seemed to result in the formation of toxic byproducts. However, recently it has become clear that also during UV processes mutagentic/genotoxic byproducts may be formed. It was found that these are nitrogen containing aromatic compounds, which are formed by the reaction of photolysis products of nitrate with (photolysis products of) natural organic matter. Now more has become clear on the formation process of these compounds, it is possible to limit or even prevent their formation during e.g. UV/H2O2 processes. Besides, it appears to be possible to remove such byproducts by means of filtration processes. Thus, UV based processes can safely be applied in water treatment.


Assuntos
Desinfecção/métodos , Água Potável , Mutagênese/efeitos da radiação , Raios Ultravioleta , Poluentes Químicos da Água/efeitos adversos , Poluentes Químicos da Água/efeitos da radiação , Purificação da Água/métodos , Qualidade de Produtos para o Consumidor , Filtração , Humanos , Peróxido de Hidrogênio/química , Radical Hidroxila/química , Nitratos/química , Nitritos/química , Oxirredução , Fotólise , Medição de Risco , Fatores de Risco , Raios Ultravioleta/efeitos adversos , Poluentes Químicos da Água/química
7.
Water Res ; 74: 191-202, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25746498

RESUMO

UV/H2O2 processes in drinking water treatment may generate byproducts which cause an increased response in Ames fluctuation assays. As this probably involves a mixture of substances in very low concentrations, it is challenging to identify the individual byproducts. Therefore it was studied under which conditions mutagenic byproducts are formed and how this can be prevented. It was found that positive Ames fluctuation test responses only are obtained when Medium Pressure UV lamps are used, and not with Low Pressure lamps. This probably is explained by the photolysis of nitrate, which plays an important role in the formation of mutagenic byproducts. The most important parameters involved in the formation of such byproducts were demonstrated to be the nitrate concentration, the natural organic matter, the UV spectrum of the lamps, and the UV dose applied. These factors explain up to 74-87% of the Ames fluctuation test responses after UV/H2O2 drinking water treatment. By taking this into account, drinking water utilities can estimate whether UV processes applied in their case may cause the formation of mutagenic byproducts, and how to take measures to prevent it.


Assuntos
Água Potável/química , Peróxido de Hidrogênio/química , Mutagênicos/análise , Nitratos/química , Raios Ultravioleta , Purificação da Água , Desinfecção/métodos , Humanos , Testes de Mutagenicidade , Mutagênicos/toxicidade , Nitratos/efeitos da radiação , Fotólise , Qualidade da Água
8.
Water Res ; 46(16): 5009-18, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22818952

RESUMO

A wide variety of environmental compounds of concern, e.g. pharmaceuticals or illicit drugs, are acids or bases that may predominantly be present as charged species in drinking water sources. These charged micropollutants may prove difficult to remove by currently used water treatment steps (e.g. UV/H(2)O(2), activated carbon (AC) or membranes). We studied the sorption affinity of some ionic organic compounds to both AC and different charged polymeric materials. Ion-exchange polymers may be effective as additional extraction phases in water treatment, because sorption of all charged compounds to oppositely charged polymers was stronger than to AC, especially for the double-charged cation metformin. Tested below 1% of the polymer ion-exchange capacity, the sorption affinity of charged micropollutants is nonlinear and depends on the composition of the aqueous medium. Whereas oppositely charged electrolytes do not impact sorption of organic ions, equally charged electrolytes do influence sorption indicating ion-exchange (IE) to be the main sorption mechanism. For the tested polymers, a tenfold increased salt concentration lowered the IE-sorption affinity by a factor two. Different electrolytes affect IE with organic ions in a similar way as inorganic ions on IE-resins, and no clear differences in this trend were observed between the sulphonated and the carboxylated cation-exchanger. Sorption of organic cations is five fold less in Ca(2+) solutions compared to similar concentrations of Na(+), while that of anionic compounds is three fold weaker in SO(4)(2-) solutions compared to equal concentrations of Cl(-).


Assuntos
Água Potável/análise , Eletrólitos/química , Resinas de Troca Iônica/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Adsorção , Cátions/química , Metformina , Modelos Químicos
9.
Water Sci Technol ; 63(1): 88-92, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21245558

RESUMO

Although the water cycle is only a minor contributor to the energy demand in society, it is a matter of good housekeeping to minimize the energy need within a sustainable water cycle. Wastewater treatment should not only be applied to purify the water, but also recover the energy present in this water, as well as to recover essential elements like nitrogen and phosphorus. From an energy analysis of the Dutch water cycle it is concluded that creating an energy neutral water cycle by using the heat content or by making use of the organic load of wastewater is within hands.


Assuntos
Fontes de Energia Elétrica , Abastecimento de Água , Gases , Efeito Estufa , Países Baixos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...