Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heart Rhythm ; 8(1): 121-30, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20951232

RESUMO

BACKGROUND: Abnormal conduction underlies both bradyarrhythmias and re-entrant tachyarrhythmias. However, no practical way exists for restoring or improving conduction in areas of conduction slowing or block. OBJECTIVE: This study sought to test the feasibility of a novel strategy for conduction repair using genetically engineered cells designed to form biological "conducting cables." METHODS: An in vitro model of conduction block was established using spatially separated, spontaneously contracting, nonsynchronized human embryonic stem cell-derived cardiomyocytes clusters. Immunostaining, dye transfer, intracellular recordings, and multielectrode array (MEA) studies were performed to evaluate the ability of genetically engineered HEK293 cells, expressing the SCN5A-encoded Na(+) channel, to couple with cultured cardiomyocytes and to synchronize their electrical activity. RESULTS: Connexin-43 immunostaining and calcein dye-transfer experiments confirmed the formation of functional gap junctions between the engineered cells and neighboring cardiomyocytes. MEA and intracellular recordings were performed to assess the ability of the engineered cells to restore conduction in the co-cultures. Synchronization was defined by establishment of fixed local activation time differences between the cardiomyocytes clusters and convergence of their activation cycle lengths. Nontransfected control cells were able to induce synchronization between cardiomyocytes clusters separated by distances up to 300 µm (n = 21). In contrast, the Na(+) channel-expressing cells synchronized contractions between clusters separated by up to 1,050 µm, the longest distance studied (n = 23). Finally, engineered cells expressing the voltage-sensitive K(v)1.3 potassium channel prevented synchronization at any distance. CONCLUSION: Genetically engineered cells, transfected to express Na(+) channels, can form biological conducting cables bridging and coupling spatially separated cardiomyocytes. This novel cell therapy approach might be useful for the development of therapeutic strategies for both bradyarrhythmias and tachyarrhythmias.


Assuntos
Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/terapia , Terapia Genética/métodos , Sistema de Condução Cardíaco/fisiopatologia , Técnicas de Cocultura , Conexina 43/metabolismo , Células-Tronco Embrionárias , Estudos de Viabilidade , Junções Comunicantes , Engenharia Genética , Células HEK293 , Humanos , Miócitos Cardíacos/fisiologia , Técnicas de Patch-Clamp , Canais de Sódio/fisiologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA