Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Reprod ; 36(1): 73-95, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36646915

RESUMO

Meiosis is a highly conserved specialised cell division in sexual life cycles of eukaryotes, forming the base of gene reshuffling, biological diversity and evolution. Understanding meiotic machinery across different plant lineages is inevitable to understand the lineage-specific evolution of meiosis. Functional and cytogenetic studies of meiotic proteins from all plant lineage representatives are nearly impossible. So, we took advantage of the genomics revolution to search for core meiotic proteins in accumulating plant genomes by the highly sensitive homology search approaches, PSI-BLAST, HMMER and CLANS. We could find that most of the meiotic proteins are conserved in most of the lineages. Exceptionally, Arabidopsis thaliana ASY4, PHS1, PRD2, PRD3 orthologs were mostly not detected in some distant algal lineages suggesting their minimal conservation. Remarkably, an ancestral duplication of SPO11 to all eukaryotes could be confirmed. Loss of SPO11-1 in Chlorophyta and Charophyta is likely to have occurred, suggesting that SPO11-1 and SPO11-2 heterodimerisation may be a unique feature in land plants of Viridiplantae. The possible origin of the meiotic proteins described only in plants till now, DFO and HEIP1, could be traced and seems to occur in the ancestor of vascular plants and Streptophyta, respectively. Our comprehensive approach is an attempt to provide insights about meiotic core proteins and thus the conservation of meiotic pathways across plant kingdom. We hope that this will serve the meiotic community a basis for further characterisation of interesting candidates in future.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Genoma de Planta , Meiose , Proteínas de Ciclo Celular/genética
2.
Cell ; 185(17): 3153-3168.e18, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35926507

RESUMO

The centromere represents a single region in most eukaryotic chromosomes. However, several plant and animal lineages assemble holocentromeres along the entire chromosome length. Here, we compare genome organization and evolution as a function of centromere type by assembling chromosome-scale holocentric genomes with repeat-based holocentromeres from three beak-sedge (Rhynchospora pubera, R. breviuscula, and R. tenuis) and their closest monocentric relative, Juncus effusus. We demonstrate that transition to holocentricity affected 3D genome architecture by redefining genomic compartments, while distributing centromere function to thousands of repeat-based centromere units genome-wide. We uncover a complex genome organization in R. pubera that hides its unexpected octoploidy and describe a marked reduction in chromosome number for R. tenuis, which has only two chromosomes. We show that chromosome fusions, facilitated by repeat-based holocentromeres, promoted karyotype evolution and diploidization. Our study thus sheds light on several important aspects of genome architecture and evolution influenced by centromere organization.


Assuntos
Centrômero , Cyperaceae , Animais , Centrômero/genética , Cyperaceae/genética , Evolução Molecular , Cariótipo , Plantas/genética
3.
Front Plant Sci ; 12: 658296, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968114

RESUMO

Differently from the common monocentric organization of eukaryotic chromosomes, the so-called holocentric chromosomes present many centromeric regions along their length. This chromosomal organization can be found in animal and plant lineages, whose distribution suggests that it has evolved independently several times. Holocentric chromosomes present an advantage: even broken chromosome parts can be correctly segregated upon cell division. However, the evolution of holocentricity brought about consequences to nuclear processes and several adaptations are necessary to cope with this new organization. Centromeres of monocentric chromosomes are involved in a two-step cohesion release during meiosis. To deal with that holocentric lineages developed different adaptations, like the chromosome remodeling strategy in Caenorhabditis elegans or the inverted meiosis in plants. Furthermore, the frequency of recombination at or around centromeres is normally very low and the presence of centromeric regions throughout the entire length of the chromosomes could potentially pose a problem for recombination in holocentric organisms. However, meiotic recombination happens, with exceptions, in those lineages in spite of their holocentric organization suggesting that the role of centromere as recombination suppressor might be altered in these lineages. Most of the available information about adaptations to meiosis in holocentric organisms is derived from the animal model C. elegans. As holocentricity evolved independently in different lineages, adaptations observed in C. elegans probably do not apply to other lineages and very limited research is available for holocentric plants. Currently, we still lack a holocentric model for plants, but good candidates may be found among Cyperaceae, a large angiosperm family. Besides holocentricity, chiasmatic and achiasmatic inverted meiosis are found in the family. Here, we introduce the main concepts of meiotic constraints and adaptations with special focus in meiosis progression and recombination in holocentric plants. Finally, we present the main challenges and perspectives for future research in the field of chromosome biology and meiosis in holocentric plants.

4.
J Mol Evol ; 89(1-2): 12-18, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33409543

RESUMO

Repairing DNA damage is one of the most important functions of the 'housekeeping' proteins, as DNA molecules are constantly subject to different kinds of damage. An important mechanism of DNA repair is the mismatch repair system (MMR). In eukaryotes, it is more complex than it is in bacteria or Archaea due to an inflated number of paralogues produced as a result of an extensive process of gene duplication and further specialization upon the evolution of the first eukaryotes, including an important part of the meiotic machinery. Recently, the discovery and sequencing of Asgard Archaea allowed us to revisit the MMR system evolution with the addition of new data from a group that is closely related to the eukaryotic ancestor. This new analysis provided evidence for a complex evolutionary history of eukaryotic MMR: an archaeal origin for the nuclear MMR system in eukaryotes, with subsequent acquisitions of other MMR systems from organelles.


Assuntos
Reparo de Erro de Pareamento de DNA , Eucariotos , Archaea/genética , Reparo de Erro de Pareamento de DNA/genética , Eucariotos/genética , Células Eucarióticas , Genoma Arqueal/genética
5.
Bioessays ; 42(9): e2000037, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32643212

RESUMO

The distribution pattern of the meiotic machinery in known eukaryotes is most parsimoniously explained by the hypothesis that all eukaryotes are ancestrally sexual. However, this assumption is questioned by preliminary results, in culture conditions. These suggested that Acanthamoeba, an organism considered to be largely asexual, constitutively expresses meiosis genes nevertheless-at least in the lab. This apparent disconnect between the "meiosis toolkit" and sexual processes in Acanthamoeba led to the conclusion that the eukaryotic ancestor is asexual. In this review, the "meiosis toolkit" is rigorously defended, drawing on numerous research articles. Additionally, the claim of constitutive meiotic gene expression is probed in Acanthamoeba via the same transcriptomics data. The results show that the expression of the meiotic machinery is not constitutive in Acanthamoeba as claimed before. Furthermore, it is argued that this would have no implications for understanding the nature of the eukaryotic ancestor, regardless of the result.


Assuntos
Eucariotos , Meiose , Células Eucarióticas , Expressão Gênica , Humanos , Meiose/genética , Recombinação Genética/genética
6.
Bioessays ; 41(6): e1800246, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31087693

RESUMO

Here a wide distribution of meiotic machinery is shown, indicating the occurrence of sexual processes in all major eukaryotic groups, without exceptions, including the putative "asexuals." Meiotic machinery has evolved from archaeal DNA repair machinery by means of ancestral gene duplications. Sex is very conserved and widespread in eukaryotes, even though its evolutionary importance is still a matter of debate. The main processes in sex are plasmogamy, followed by karyogamy and meiosis. Meiosis is fundamentally a chromosomal process, which implies recombination and ploidy reduction. Several eukaryotic lineages are proposed to be asexual because their sexual processes are never observed, but presumed asexuality correlates with lack of study. The authors stress the complete lack of meiotic proteins in nucleomorphs and their almost complete loss in the fungus Malassezia. Inversely, complete sets of meiotic proteins are present in fungal groups Glomeromycotina, Trichophyton, and Cryptococcus. Endosymbiont Perkinsela and endoparasitic Microsporidia also present meiotic proteins.


Assuntos
Eucariotos/genética , Meiose/genética , Sexo , Evolução Biológica , Proteínas de Ciclo Celular/genética , Cromossomos/genética , Reparo do DNA/genética , Hereditariedade/genética , Estágios do Ciclo de Vida/genética , Filogenia , Ploidias , Recombinação Genética , Reprodução/genética , Reprodução Assexuada/genética
7.
Genome Biol Evol ; 10(11): 3118-3128, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30380054

RESUMO

Sex and reproduction are often treated as a single phenomenon in animals and plants, as in these organisms reproduction implies mixis and meiosis. In contrast, sex and reproduction are independent biological phenomena that may or may not be linked in the majority of other eukaryotes. Current evidence supports a eukaryotic ancestor bearing a mating type system and meiosis, which is a process exclusive to eukaryotes. Even though sex is ancestral, the literature regarding life cycles of amoeboid lineages depicts them as asexual organisms. Why would loss of sex be common in amoebae, if it is rarely lost, if ever, in plants and animals, as well as in fungi? One way to approach the question of meiosis in the "asexuals" is to evaluate the patterns of occurrence of genes for the proteins involved in syngamy and meiosis. We have applied a comparative genomic approach to study the occurrence of the machinery for plasmogamy, karyogamy, and meiosis in Amoebozoa, a major amoeboid supergroup. Our results support a putative occurrence of syngamy and meiotic processes in all major amoebozoan lineages. We conclude that most amoebozoans may perform mixis, recombination, and ploidy reduction through canonical meiotic processes. The present evidence indicates the possibility of sexual cycles in many lineages traditionally held as asexual.


Assuntos
Amebozoários/genética , Genoma de Protozoário , Meiose , Genômica , Recombinação Genética , Sexo
9.
Proc Biol Sci ; 283(1840)2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27708147

RESUMO

Recombinase enzymes promote DNA repair by homologous recombination. The genes that encode them are ancestral to life, occurring in all known dominions: viruses, Eubacteria, Archaea and Eukaryota. Bacterial recombinases are also present in viruses and eukaryotic groups (supergroups), presumably via ancestral events of lateral gene transfer. The eukaryotic recA genes have two distinct origins (mitochondrial and plastidial), whose acquisition by eukaryotes was possible via primary (bacteria-eukaryote) and/or secondary (eukaryote-eukaryote) endosymbiotic gene transfers (EGTs). Here we present a comprehensive phylogenetic analysis of the recA genealogy, with substantially increased taxonomic sampling in the bacteria, viruses, eukaryotes and a special focus on the key eukaryotic supergroup Amoebozoa, earlier represented only by Dictyostelium We demonstrate that several major eukaryotic lineages have lost the bacterial recombinases (including Opisthokonta and Excavata), whereas others have retained them (Amoebozoa, Archaeplastida and the SAR-supergroups). When absent, the bacterial recA homologues may have been lost entirely (secondary loss of canonical mitochondria) or replaced by other eukaryotic recombinases. RecA proteins have a transit peptide for organellar import, where they act. The reconstruction of the RecA phylogeny with its EGT events presented here retells the intertwined evolutionary history of eukaryotes and bacteria, while further illuminating the events of endosymbiosis in eukaryotes by expanding the collection of widespread genes that provide insight to this deep history.


Assuntos
Proteínas de Bactérias/genética , Eucariotos/genética , Transferência Genética Horizontal , Recombinases Rec A/genética , Amebozoários/enzimologia , Amebozoários/genética , Dictyostelium/enzimologia , Dictyostelium/genética , Eucariotos/enzimologia , Evolução Molecular , Filogenia
10.
Syst Parasitol ; 78(1): 69-71, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21161492

RESUMO

A new species of Eimeria Schneider, 1875 from a cracid bird, Mitu tuberosum Spix, held in captivity is described from Brazil. Oöcysts of Eimeria abmitu n. sp. are ovoid, with a smooth, colourless, bilayered wall, measure 24.2 × 15.5 µm and have a length/width ratio of 1.56. The sporulated oöcysts contain two to five polar granules and four ellipsoidal sporocysts measuring 13.6 × 6.4 µm, each with a small crescent-shaped Stieda body, a sub-Stieda body, a loosely granular sporocyst residuum and two comma-shaped sporozoites each with a spherical refractile body.


Assuntos
Eimeria/classificação , Eimeria/isolamento & purificação , Galliformes/parasitologia , Animais , Eimeria/citologia , Eimeria/crescimento & desenvolvimento , Fezes/parasitologia , Oocistos/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...