Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 20(37): 374106, 2008 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-21694413

RESUMO

We perform density functional theory (DFT) calculations on molecular junctions consisting of a single molecule between two Au(111) electrodes. The molecules consist of an alkane or aryl bridge connecting acceptor, donor or thiol endgroups in various combinations. The molecular geometries are optimized and wavefunctions and eigenstates of the junction calculated using the DFT method, and then the electron transport properties for the junction are calculated within the non-equilibrium Green's function (NEGF) formalism. The current-voltage or i(V) characteristics for the various molecules are then compared. Rectification is observed for these molecules, particularly for the donor-bridge-acceptor case where the bridge is an alkane, with rectification being in the same direction as the original findings of Aviram and Ratner (1974 Chem. Phys. Lett. 29 277-83), at least for relatively large negative and positive applied bias. However, at smaller bias rectification is in the opposite direction and is attributed to the lowest unoccupied orbital associated with the acceptor group.

2.
J Phys Chem B ; 109(43): 20387-92, 2005 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-16853638

RESUMO

Density functional calculations of the adsorption of ethynylbenzene on the Au(111) surface show that, after cleavage of the C-H bond, the terminal carbon makes a strong covalent bond to the surface. The bond energy is shown to be about 70 kcal.mol(-1) with the fcc hollow site being most stable and the molecule oriented perpendicular to the surface. Adsorption without elimination of hydrogen is also possible via a hydrogen 1,2 shift to form a vinylidene surface-bound species, or opening of the C-C triple bond and adsorption through the two carbon atoms in a flat conformation. The reaction energy for formation of the surface-bound vinylidene is estimated to be 5 kcal.mol(-1) exothermic relative to the isolated ethynylbenzene and gold substrate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...